asinh(x) returns inverse hyperbolic sin of x , the input number x is in radian.
import math
print(math.asinh(1)) # 0.8813735870195429
print(math.asinh(1.5)) # 1.1947632172871094
print(math.asinh(5)) # 2.3124383412727525
Note that all the inputs are in radian.
With negative input numbers
import math
print(math.asinh(-1)) # -0.8813735870195429
print(math.asinh(-8.1)) # -2.788800040920179
Inputs in degree
We can convert radian value to degree and use the same
import math
in_degree = 60
in_redian = math.radians(in_degree)
print(math.asinh(in_redian)) # 0.9143566553928859
Output
0.9143566553928859
1 radian = 57.2957914331 degree
1 degree = 0.0174533 radian
Drawing graph of asinh()
We will use Matplotlib to generate graph of asinh
import matplotlib.pyplot as plt
x=[]
y=[]
i=-10
while (i<=10):
x.append(i)
y.append(math.asinh(i))
i=i+0.1
plt.plot(x,y)
plt.axvline(x=0.00,linewidth=2, color='#f1f1f1')
plt.axhline(y=0.00,linewidth=2, color='#f1f1f1')
plt.grid(linestyle='-',
linewidth=0.5,color='#f1f1f1')
plt.show()
Example 1: Handling Negative Inputs
import math
print(math.asinh(-2)) # Output: -1.4436354751788103
Example 2: Using cmath for Complex Numbers
import cmath
z = complex(2, 3)
print(cmath.asinh(z)) # Handles complex input
Output
(1.9686379257930964+0.9646585044076028j)
Example 3: Hyperbolic Calculations in Engineering
import math
x = 1.5
result = math.asinh(x)
print(result) # Output: 1.1947632172871094
← Subscribe to our YouTube Channel here