
pip install pandas
Getting the version of Pandas
import pandas as pd
print("Pandas Version : ",pd.__version__)
Upgrade Pandas
pip install --upgrade pandas
Data statistics, filtering, Aggregation and grouping, data merging and joining etc.
Data AnalysisHandling Null, NaN data, finding duplicate data, replacing data and more .
Data Cleaning| Exercise1 | Basic data handling , DataFrame |
| Exercise1-1 | Using cut(), groupby and plotting graphs |
| Exercise-Adv | Using groupby and merge of DataFrame |
| Exercise2 | Using str.contains(), max(), min(),len() of DataFrame |
| Exercise3 | Using date and time functions with groupby of DataFrame |
| Exercise3-2 | Using date and time functions of DataFrame |
| Exercise3-3 | Using date and time functions with groupby |
| Exercise3-4 | Using date and time with where timedelta64 |
We can’t store data in Pandas DataFrame. We can process the data by using Pandas DataFrame after reading data from different sources. Similarly after processing we can save data in different files or database by using available tools.
| loc | Values at different position using column label |
| rows | Filtering rows based on data |
| str.contains | string matching against data columns |
| str.contains.sum | Max Min Sum of any column |
| Convert Case | Lower to Upper and vice versa |
| split() | Breaking string using delimiter |
| slice() | Substring by breaking string |
| cat() | Concatenate strings |
| count() | Number of occurrences of pattern |
| replace() | Replace part of string by regex |
| len() | Length of the data in our DataFrame |
| zfill() | Prepending string with '0' |
| Pandas Date and time | Managing Date and time in Pandas DataFrame |

import pandas as pd
my_data = pd.read_excel('D:\emp.xlsx')
# reading data from root of D drive.
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://userid:password@localhost/database_name")
### Creating new table emp or appending existing table
my_data.to_sql(con=my_conn,name='emp',if_exists='append')

import pandas as pd
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://userid:password@localhost/database_name")
sql="SELECT * FROM emp "
my_data = pd.read_sql(sql,my_conn )
my_data.to_excel('D:\emp2.xlsx')
| columns | List of column headers of a DataFrame |
| rename | rename columns of DataFrame |
| add_suffix | adding suffix to column names of a DataFrame |
| add_prefix | adding prefix to column names of a DataFrame |
| drop | Delete columns or rows |
import pandas as pd
print(len(dir(pd))) # 139
for i in dir(pd):
print(i)
Pandas DataFrame
| inplace | Boolean ( True / False ), Result is written back to same dataframe ( True ). The source dataframe is changed. False otherwise. |
| Section | Details | Download |
|---|---|---|
| A | Introduction | Download |
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.