cosh()

cosh(x) returns hyperbolic cosine of x , the input number x is in radian.
import math
print(math.cosh(-1))       # 1.5430806348152437
print(math.cosh(-1.5))     # 2.352409615243247
print(math.cosh(-5))       # 74.20994852478785
print(math.cosh(0))        # 1.0
print(math.cosh(1))        # 1.5430806348152437
print(math.cosh(1.5))      # 2.352409615243247
print(math.cosh(5))        # 74.20994852478785
Note that all the inputs are in radian.

Inputs in degree

We can convert radian value to degree and use the same
import math
in_degree = 60
in_redian = math.radians(in_degree)
print(math.cosh(in_redian)) # 1.600286857702386
1 radian = 57.2957914331 degree
1 degree = 0.0174533 radian

Drawing graph of cosh()

We will use Matplotlib to generate graph of cosh cosh graph
import matplotlib.pyplot as plt
x=[]
y=[]
i=-10
while (i<=10):
    x.append(i)
    y.append(math.cosh(i))
    i=i+0.1
plt.plot(x,y)
plt.axvline(x=0.00,linewidth=2, color='#f1f1f1')

plt.grid(linestyle='-',
    linewidth=0.5,color='#f1f1f1')
plt.show()

Using cosh() with Negative Numbers

import math
print(math.cosh(-2))  # Output: 3.7621956910836314 (cosh is symmetric)

Example : Finding the Difference Between `cosh()` and `cos()`

import math
angle = math.radians(60)
print(f"cos(60°) = {math.cos(angle)}")  # cos(60°)
print(f"cosh(60°) = {math.cosh(angle)}")  # cosh(60°)

Example : Approximation Using Series Expansion

import math
def cosh_series(x, n_terms=10):
    result = 0
    for n in range(n_terms):
        result += x**(2*n) / math.factorial(2*n)
    return result

print(cosh_series(1))  # Approximation of cosh(1)


Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer