Python Math methods
cosh(x) returns hyperbolic cosine of x , the input number x is in radian.
import math
print(math.cosh(-1)) # 1.5430806348152437
print(math.cosh(-1.5)) # 2.352409615243247
print(math.cosh(-5)) # 74.20994852478785
print(math.cosh(0)) # 1.0
print(math.cosh(1)) # 1.5430806348152437
print(math.cosh(1.5)) # 2.352409615243247
print(math.cosh(5)) # 74.20994852478785
Note that all the inputs are in radian .
Inputs in degree
We can convert radian value to degree and use the same
import math
in_degree = 60
in_redian = math.radians(in_degree)
print(math.cosh(in_redian)) # 1.600286857702386
1 radian = 57.2957914331 degree
1 degree = 0.0174533 radian
Drawing graph of cosh()
We will use Matplotlib to generate graph of cosh
import matplotlib.pyplot as plt
x=[]
y=[]
i=-10
while (i<=10):
x.append(i)
y.append(math.cosh(i))
i=i+0.1
plt.plot(x,y)
plt.axvline(x=0.00,linewidth=2, color='#f1f1f1')
plt.grid(linestyle='-',
linewidth=0.5,color='#f1f1f1')
plt.show()
Using cosh() with Negative Numbers
import math
print(math.cosh(-2)) # Output: 3.7621956910836314 (cosh is symmetric)
Example : Finding the Difference Between `cosh()` and `cos()`
import math
angle = math.radians(60)
print(f"cos(60°) = {math.cos(angle)}") # cos(60°)
print(f"cosh(60°) = {math.cosh(angle)}") # cosh(60°)
Example : Approximation Using Series Expansion
import math
def cosh_series(x, n_terms=10):
result = 0
for n in range(n_terms):
result += x**(2*n) / math.factorial(2*n)
return result
print(cosh_series(1)) # Approximation of cosh(1)
← Subscribe to our YouTube Channel here