Numpy mean()

Numpy

numpy.mean(a,axis=None,dtype=None,out=None,keepdims=False)
Return arithmetic mean of elements across given axis.
aarray, elements to get the mean value
axisInt (optional ), or tuple, default is None. If axis given then across the axis is returned.
dtypedata-type( Optional ), Data Type of returned array or value.
outOptional. If given then output to be stored. Must be of same time as of the output
keepdimsBool ( Optional ), output matches to the input array dimension.
We will use these parameters in our examples.

Sample array

You can use randint() to create an array for our examples. Or can use fixed elements to create the array.
import numpy as np
# my_data=np.random.randint(2,high=7,size=(3,3),dtype='int16') 
my_data=np.array([[6, 3, 2], [2, 6, 2], [6, 2, 3]])
print(my_data)
Output
[[6 3 2]
 [2 6 2]
 [6 2 3]]

Axis

Sum of the elements across the axis. Axis of Numpy array
print("mean()      : ", my_data.mean())
print("mean(axis=0):", my_data.mean(axis=0))
print("mean(axis=1):", my_data.mean(axis=1))
Output
mean()      :  3.5555555555555554
mean(axis=0): [4.66666667 3.66666667 2.33333333]
mean(axis=1): [3.66666667 3.33333333 3.66666667]

dtype

The data type of the output. By default the output will have the dtype of input array.
print("mean(axis=1,dtype=np.int8) : ", my_data.mean(axis=1,dtype=np.int8))
print("mean(axis=1,dtype=np.int32) : ", my_data.mean(axis=1,dtype=np.int32))
print("mean(axis=1,dtype=np.float64) : ", my_data.mean(axis=1,dtype=np.float64))
print("mean(axis=1,dtype=np.complex128) : ", my_data.mean(axis=1,dtype=np.complex128))
Output
mean(axis=1,dtype=np.int8) :  [3 3 3]
mean(axis=1,dtype=np.int32) :  [3 3 3]
mean(axis=1,dtype=np.float64) :  [3.66666667 3.33333333 3.66666667]
mean(axis=1,dtype=np.complex128) :  [3.66666667+0.j 3.33333333+0.j 3.66666667+0.j]

keepdims

If it is set to True ( keepdims=True ) then it will take the dimension of input array.
print("mean(keepdims=True) : ", my_data.mean(keepdims=True))
print("mean(keepdims=False) : ", my_data.mean(keepdims=False))
Output
mean(keepdims=True) :  [[3.55555556]]
mean(keepdims=False) :  3.5555555555555554

out

Alternative output array, must be of same shape as expected output. Let us first check with axis.
x = np.zeros(3,dtype=int)
print(my_data.mean(axis=0,out=x))
print(x)
Output
[4 3 2]
[4 3 2]
Without using axis
y = np.array(1)
print(my_data.mean(out=y))
print(y)
Output
3
3
Numpy sum() max() min()


plus2net.com



Post your comments , suggestion , error , requirements etc here




We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
©2000-2020 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer