Numpy min()

Numpy

numpy.min(a,axis=None,out=None,keepdims, initial, where)
Return min of elements across given axis.
aarray, elements to get the min value
axisInt (optional ), or tuple, default is None, minimum value among all the elements. If axis given then values across the axis is returned.
outOptional. If given then output to be stored. Must be of same shape as of the output
keepdimsBool ( Optional ), output matches to the input array dimension.
whereOptional, Elements to include for calculation of minimum value
initialOptional, int, Minimum value of the output. If given then this is considered if it is less than the actual output
We will use these parameters in our examples.

Sample array

You can use randint() to create an array for our examples. Or can use fixed elements to create the array.
import numpy as np
# my_data=np.random.randint(2,high=7,size=(3,3),dtype='int16') 
my_data=np.array([[6, 3, 2], [7, 2, 2], [6, 2, 9]])
print(my_data)
Output
[[6 3 2]
 [7 2 2]
 [6 2 9]]

Axis

Minimum value of the elements across the axis. Axis of Numpy min array
print("min()      : ", my_data.min())
print("min(axis=0): ", my_data.min(axis=0))
print("min(axis=1): ", my_data.min(axis=1))
Output
min()       :  2
min(axis=0) :  [6 2 2]
min(axis=1) :  [2 2 2]

out

Alternative output array, must be of same shape as expected output. Let us first check with axis.
x = np.zeros(3,dtype=int)
print(my_data.min(axis=0,out=x))
print(x)
Output
[6 2 2]
[6 2 2]
Without using axis
y = np.array(1)
print(my_data.min(out=y))
print(y)
Output
2
2

keepdims

If it is set to True ( keepdims=True ) then it will take the dimension of input array.
print("min(keepdims=True) : ", my_data.min(keepdims=True))
print("min(keepdims=False) : ", my_data.min(keepdims=False))
Output
min(keepdims=True) :  [[2]]
min(keepdims=False) :  2

Using where

Numpy min array Where By using where we can say which elements to use and which elements not to use ( by setting True or False ) . While using where we have to give initial value.
print(my_data.min(where=[True, False,True],initial=2))
Output
2
Using axis with where
print(my_data.min(where=[True, False,True],initial=2))
print(my_data.min(axis=1,where=[True, False,True],initial=1))
print(my_data.min(axis=1,where=[True, False,True],initial=10))
print(my_data.min(axis=0,where=[True, False,True],initial=3))
Output
2
[1 1 1]
[2 2 6]
[3 3 2]

initial

We can assign initial value to our output. Note that the final output will be minimum of initial vlaue and actual min value ( without the initial value ).
print(my_data.min())  # 2
print(my_data.min(initial=1)) # 1
print(my_data.min(initial=12)) # 2 
Output
2
1
2
Check the where option above. The value assigned to intial value is given as output where it is less than the actual output.

Intial vlaue with Axis option

Compare the values with initial value and without intitial value. We used axis=0 , you can try with axis=1.
print(my_data.min(axis=0))  # [6 2 2]
print(my_data.min(axis=0,initial=12)) # [6 2 2]
print(my_data.min(axis=0,initial=1)) # [1 1 1]
Output
[6 2 2]
[6 2 2]
[1 1 1]
Numpy mean() sum() max()


plus2net.com



Post your comments , suggestion , error , requirements etc here




We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
©2000-2020 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer