numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=)
Return standard deviation of elements across given axis.
a | array, elements to get the std value |
axis | Int (optional ), or tuple, default is None, stdvalue among all the elements. If axis given then values across the axis is returned. |
out | Optional. If given then output to be stored. Must be of same shape as of the output |
keepdims | Bool ( Optional ), output matches to the input array dimension. |
ddof | Delta Degrees of Freedom ( default is 0 ) , N - ddof is used where N is the number of elements in computing the standard deviation |
We will use these parameters in our examples.
Sample array
You can use randint() to create an array for our examples. Or can use fixed elements to create the array.
import numpy as np
# my_data=np.random.randint(2,high=7,size=(3,3),dtype='int16')
my_data=np.array([[6, 3, 2], [7, 2, 2], [6, 2, 9]])
print(my_data)
Output
[[6 3 2]
[7 2 2]
[6 2 9]]
Axis
stdimum value of the elements across the axis.
print("std() : ", my_data.std())
print("std(axis=0) : ", my_data.std(axis=0))
print("std(axis=1) : ", my_data.std(axis=1))
Output
std() : 2.5385910352879693
std(axis=0) : [0.47140452 0.47140452 3.29983165]
std(axis=1) : [1.69967317 2.3570226 2.86744176]
out
Alternative output array, must be of same shape as expected output. Let us first check with axis.
keepdims
If it is set to True ( keepdims=True ) then it will take the dimension of input array.
print("std(keepdims=True) : ", my_data.std(keepdims=True))
print("std(keepdims=False) : ", my_data.std(keepdims=False))
Output
std(keepdims=True) : [[2.53859104]]
std(keepdims=False) : 2.5385910352879693
ddof
ddof = 0
( default) , this is Population Standard Deviation
ddof = 1
, this is Sample Standard Deviation
Check this code with output.
import numpy as np
list1=[12,13,15,11,9,12,13,10,11,12,13,7,8]
my_data=np.array(list1)
print(my_data.std(ddof=0)) # 2.153846153846154
print(my_data.std(ddof=1)) # 2.2417941532712202
« Comparison of Standard Deviation using Python, Pandas, Numpy and Statistics library
«Numpy
mean()
sum()
max()
← Subscribe to our YouTube Channel here