Numpy sum()

numpy.sum(a,axis=None,dtype=None,out=None,keepdims, initial, where)
Return sum of elements across given axis.
aarray, elements to get the sum value
axisInt (optional ), or tuple, default is None, will sum all the elements. If axis given then across the axis is returned.
dtypedata-type( Optional ), Data Type of returned array or value.
outOptional. If given then output to be stored. Must be of same time as of the output
keepdimsBool ( Optional ), output matches to the input array dimension.
whereOptional, Elements to include for calculation of Sum
initialOptional, int, Initial value of sum. This value will be added to our final output
We will use these parameters in our examples.

Sample array

You can use randint() to create an array for our examples. Or can use fixed elements to create the array.
import numpy as np
# my_data=np.random.randint(2,high=7,size=(3,3),dtype='int16') 
my_data=np.array([[6, 3, 2], [2, 6, 2], [6, 2, 3]])
print(my_data)
Output
[[6 3 2]
 [2 6 2]
 [6 2 3]]

Axis

Sum of the elements across the axis. Axis of Numpy  array sum
print("sum()      : ", my_data.sum())
print("sum(axis=0):", my_data.sum(axis=0))
print("sum(axis=1):", my_data.sum(axis=1))
Output
sum()      :  32
sum(axis=0): [14 11  7]
sum(axis=1): [11 10 11]

dtype

The data type of the output. By default the output will have the dtype of input array.
print("sum(axis=1,dtype=np.int8) : ", my_data.sum(axis=1,dtype=np.int8))
print("sum(axis=1,dtype=np.int32) : ", my_data.sum(axis=1,dtype=np.int32))
print("sum(axis=1,dtype=np.float64) : ", my_data.sum(axis=1,dtype=np.float64))
print("sum(axis=1,dtype=np.complex128) : ", my_data.sum(axis=1,dtype=np.complex128))
Output
sum(axis=1,dtype=np.int8) :  [11 10 11]
sum(axis=1,dtype=np.int32) :  [11 10 11]
sum(axis=1,dtype=np.float64) :  [11. 10. 11.]
sum(axis=1,dtype=np.complex128) :  [11.+0.j 10.+0.j 11.+0.j])

keepdims

If it is set to True ( keepdims=True ) then it will take the dimension of input array.
print("sum(keepdims=True) : ", my_data.sum(keepdims=True))
print("sum(keepdims=False) : ", my_data.sum(keepdims=False))
Output
sum(keepdims=True) :  [[43]]
sum(keepdims=False) :  43

out

Alternative output array, must be of same shape as expected output. Let us first check with axis.
x = np.zeros(3,dtype=int)
print(my_data.sum(axis=0,out=x))
print(x)
Output
[14 11  7]
[14 11  7]
Without using axis
y = np.array(1)
print(my_data.sum(out=y))
print(y)
Output
32
32

Using where

Numpy Sum Where By using where we can say which elements to use and which elements not to use ( by setting True or False ) .
print(my_data.sum(where=[True, False,True]))
Output
21
Using axis with where
print(my_data.sum(axis=1,where=[True, False,True]))
print(my_data.sum(axis=0,where=[True, False,True]))
Output
[8 4 9]
[14  0  7]

initial

We can assign initial value to our Sum. This will be added to final value.
print(my_data.sum(initial=10))
Output
42
Numpy mean() max() min()
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer