numpy.sum(a,axis=None,dtype=None,out=None,keepdims, initial, where)
Return sum of elements across given axis.
a | array, elements to get the sum value |
axis | Int (optional ), or tuple, default is None, will sum all the elements. If axis given then across the axis is returned. |
dtype | data-type( Optional ), Data Type of returned array or value. |
out | Optional. If given then output to be stored. Must be of same time as of the output |
keepdims | Bool ( Optional ), output matches to the input array dimension. |
where | Optional, Elements to include for calculation of Sum |
initial | Optional, int, Initial value of sum. This value will be added to our final output |
import numpy as np
# my_data=np.random.randint(2,high=7,size=(3,3),dtype='int16')
my_data=np.array([[6, 3, 2], [2, 6, 2], [6, 2, 3]])
print(my_data)
Output
[[6 3 2]
[2 6 2]
[6 2 3]]
print("sum() : ", my_data.sum())
print("sum(axis=0):", my_data.sum(axis=0))
print("sum(axis=1):", my_data.sum(axis=1))
Output
sum() : 32
sum(axis=0): [14 11 7]
sum(axis=1): [11 10 11]
print("sum(axis=1,dtype=np.int8) : ", my_data.sum(axis=1,dtype=np.int8))
print("sum(axis=1,dtype=np.int32) : ", my_data.sum(axis=1,dtype=np.int32))
print("sum(axis=1,dtype=np.float64) : ", my_data.sum(axis=1,dtype=np.float64))
print("sum(axis=1,dtype=np.complex128) : ", my_data.sum(axis=1,dtype=np.complex128))
Output
sum(axis=1,dtype=np.int8) : [11 10 11]
sum(axis=1,dtype=np.int32) : [11 10 11]
sum(axis=1,dtype=np.float64) : [11. 10. 11.]
sum(axis=1,dtype=np.complex128) : [11.+0.j 10.+0.j 11.+0.j])
print("sum(keepdims=True) : ", my_data.sum(keepdims=True))
print("sum(keepdims=False) : ", my_data.sum(keepdims=False))
Output
sum(keepdims=True) : [[43]]
sum(keepdims=False) : 43
x = np.zeros(3,dtype=int)
print(my_data.sum(axis=0,out=x))
print(x)
Output
[14 11 7]
[14 11 7]
Without using axis
y = np.array(1)
print(my_data.sum(out=y))
print(y)
Output
32
32
By using where we can say which elements to use and which elements not to use ( by setting True or False ) .
print(my_data.sum(where=[True, False,True]))
Output
21
Using axis with where
print(my_data.sum(axis=1,where=[True, False,True]))
print(my_data.sum(axis=0,where=[True, False,True]))
Output
[8 4 9]
[14 0 7]
print(my_data.sum(initial=10))
Output
42
Numpy
mean()
max()
min()
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.