numpy.arange(start,stop, step,dtype=None)
Return ndarray by using start, stop, step and dtype.
start | number, Optional,default is 0, Start value of the elements |
stop | number, Optional,Upper limit of start ( value not included ). |
step | number, Optional, default is 1 |
dtype | type of output, Optional, default is dtype of input arguments |
import numpy as np
print(np.arange(0)) # []
print(np.arange(5)) # [0 1 2 3 4]
With start stop and step options
print(np.arange(start=1,stop=5,step=2)) # [1 3]
print(np.arange(1,5))
Output
[1 2 3 4]
Creating empty array
x=np.arange(3,3)
print(x) # []
print(np.arange(start=1,stop=5,step=2)) # [1 3]
print(np.arange(1,5,2)) # [1 3]
print(np.arange(-10,-3,2)) # [-10 -8 -6 -4]
print(np.arange(-3,-10,-2)) # [-3 -5 -7 -9]
print(np.arange(-3,10,3)) # [-3 0 3 6 9]
print(np.arange(.4, 2.8,.7)) # [0.4 1.1 1.8 2.5]
print(np.arange(-2.8, 2,.9)) # [-2.8 -1.9 -1. -0.1 0.8 1.7]
print(np.arange(1,5,dtype=np.int8)) # [1 2 3 4]
print(np.arange(1,5,dtype=np.float64)) # [1. 2. 3. 4.]
Getting the dtype
my_ar=np.arange(1,5,dtype=np.float64)
print(my_ar.dtype) # float64
Numpyeye()
ones()
bincount()
linspace()
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.