numpy.array_split(ary, indices_or_sections, axis=0)
Return broken array .
ary | input array to be broken |
sections | number, number of sections of output . |
Examples
import numpy as np
my_ar=np.arange(9)
print(np.array_split(my_ar,3))
Output
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]
With unequal number of elements in output
my_ar=np.arange(9)
print(np.array_split(my_ar,5))
Output
[array([0, 1]), array([2, 3]), array([4, 5]), array([6, 7]), array([8])]
Example
import numpy as np
my_ar=np.arange(9)
print(np.array_split(my_ar,4))
Output
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
my_data=np.array([[6, 3, 2], [7, 2, 2], [6, 2, 9]])
print(np.array_split(my_data,3))
Output
[array([[6, 3, 2]]), array([[7, 2, 2]]), array([[6, 2, 9]])]
Elements of the output array
import numpy as np
my_data=np.array([[6, 3, 2], [7, 2, 2], [6, 2, 9]])
my_ar=np.array_split(my_data,3)
print(my_ar[1]) # [[7 2 2]]
print(my_ar[1][0]) # [7 2 2]
print(my_ar[1][0][2]) # 2
Using float dtype
my_ar=np.arange(9.)
print(np.array_split(my_ar,4))
Output
[array([0., 1., 2.]), array([3., 4.]), array([5., 6.]), array([7., 8.])]
«Numpy
eye()
ones()
bincount()
← Subscribe to our YouTube Channel here