?
b
B
i
u
f
c
m
M
O
S, a
U
V
import numpy as np
npr1=np.array(['a','b','c'])
npr2=np.array([1,2,5])
npr3=np.array([True,True,False,True])
print(npr1.dtype) # <U1
print(npr2.dtype) # int64
print(npr3.dtype) # bool
Specifying data type while creating the array
npr4 = np.array([1, 2, 3, 4], dtype='?')
print(npr4.dtype) # bool
npr5 = np.array([1, 2, 3, 4], dtype='U')
print(npr5.dtype) # <U1
npr4 = np.array([1, 2, 3, 4], dtype='?')
print(npr4.dtype) # bool
npr4= npr4.astype(np.int32)
print(npr4.dtype) # int32
While changing the data may change to match the new requirment. Here float data type is changed to integer type.
npr1=np.array([1.4,3,4.9,9])
print(npr1.dtype) #float64
npr1=npr1.astype(np.int8) # changing to int8 data type
print(npr1.dtype) # int8
print(npr1) # [1 3 4 9] # Output after changing the data type
When we increase the size there will not be any change of data.
npr2=np.array(['a','b','c'])
print(npr2.dtype) #<U1
npr2=npr2.astype('<U2') # changed data type to U2
print(npr2.dtype) # <U2
print(npr2) # ['a' 'b' 'c']
When we decrease the size there will be data loss.
npr2=np.array(['a12','b123','c1234'])
print(npr2.dtype) # <U5
npr2=npr2.astype('<U2') # change data type to U2
print(npr2) # ['a1' 'b1' 'c1']
Note in above lines we are specifying the size while defining the data type.
import numpy as np
student=np.dtype([('id','i'),('name','S20')])
print(type(student)) # <class 'numpy.dtype[void]'>
data=np.array([(1,'Alex'),(2,'Rabi')]) # adding data
print(data)
Output
<class 'numpy.dtype[void]'>
[['1' 'Alex']
['2' 'Rabi']]
More Example on using structured data.
import numpy as np
student=np.dtype([('id','i'),('name','S20')])
data=np.array([(1,'Alex'),(2,'Rabi')]) # adding data
print(data[1]) # ['2' 'Rabi']
print(data[0][1]) # Alex
Example of getting dtype from the structured data array.
import numpy as np
student=np.dtype([('id','i'),('name','S20')])
data=np.array([(1,'Alex'),(2,'Rabi')]) # adding data
name=data[:,1] # Name column
id=data[:,0] #id column
print(id.dtype) # <U21
id=id.astype(np.int32) # converting the data type to integer
print(id.dtype) # int32
Create a Numpy array using Student table. Numpy type |
C type |
Description |
---|---|---|
|
|
Boolean (True or False) stored as a byte |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
|
Platform-defined |
|
Half precision float: sign bit, 5 bits exponent, 10 bits mantissa |
|
|
|
Platform-defined single precision float: typically sign bit, 8 bits exponent, 23 bits mantissa |
|
|
Platform-defined double precision float: typically sign bit, 11 bits exponent, 52 bits mantissa. |
|
|
Platform-defined extended-precision float |
|
|
Complex number, represented by two single-precision floats (real and imaginary components) |
|
|
Complex number, represented by two double-precision floats (real and imaginary components). |
|
|
Complex number, represented by two extended-precision floats (real and imaginary components). |