# Numpy eye()

``numpy.eye(N, M=None, k=0, dtype=, order='C')``
Return ndarray ( N, M ) shape.
 `N` Int, number of rows `M` Int (optional ), number of columns ( default is equal to N ) `k` Int (optional ), default is 0,Position of diagonal, Positive value for upper and negative for lower diagonal `dtype` data-type( Optional ), Data Type of returned array. `order` {'C','F'} Optional, how the output is to be stored. C- style or Fortan style
 Shape: (3, 4) Dimension 2 Shape: (4, 3) Dimension 2

## Using N and M

``````import numpy as np
my_data=np.eye(3)
print(my_data)``````
Output, we used N=3 here, so default value of M is also 3.
``````[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]``````
Let us use different value for M
``my_data=np.eye(4,M=3)``
Output
``````[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]
[0. 0. 0.]]``````

## Using k

We can use k to change the postion of diagonal. Try with positive value of key
``my_data=np.eye(4,k=2)``
Output
``````[[0. 0. 1. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]``````
Let us try with negative value of k
``my_data=np.eye(4,k=-1)``
Output
``````[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]``````

## dtype

We will try to return string dtype
``my_data=np.eye(4,dtype=str)``
Output
``````[['1' '' '' '']
['' '1' '' '']
['' '' '1' '']
['' '' '' '1']]``````
dtype=float
``my_data=np.eye(4,dtype=float)``
Output
``````[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]``````

Subscribe to our YouTube Channel here

## Subscribe

* indicates required
Subscribe to plus2net

plus2net.com