numpy.eye(N, M=None, k=0, dtype=, order='C')
Return ndarray ( N, M ) shape.
N | Int, number of rows |
M | Int (optional ), number of columns ( default is equal to N ) |
k | Int (optional ), default is 0,Position of diagonal, Positive value for upper and negative for lower diagonal |
dtype | data-type( Optional ), Data Type of returned array. |
order | {'C','F'} Optional, how the output is to be stored. C- style or Fortan style |
Shape: (3, 4) Dimension 2 | Shape: (4, 3) Dimension 2 |
import numpy as np
my_data=np.eye(3)
print(my_data)
Output, we used N=3 here, so default value of M is also 3.
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Let us use different value for M
my_data=np.eye(4,M=3)
Output
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]
[0. 0. 0.]]
my_data=np.eye(4,k=2)
Output
[[0. 0. 1. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
Let us try with negative value of k
my_data=np.eye(4,k=-1)
Output
[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]]
my_data=np.eye(4,dtype=str)
Output
[['1' '' '' '']
['' '1' '' '']
['' '' '1' '']
['' '' '' '1']]
dtype=float
my_data=np.eye(4,dtype=float)
Output
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
Numpyones()
bincount()
arange()
linspace()