Numpy Array Methods


We can use these methods to get different outputs from array.

allTest all elements in given axis is True or not
anyTest all elements in given axis is True or not
argmaxPosition of Max value along any axis
argminPosition of Min value along any axis
argsortReturn the indices after sorting
chooseSelect elements based on position
clipSet a maximum and minimum values for elements
compressSelected elements based on condition
copyCopy one array to another array
cumprodCumulative product of elements
cumsumCumulative sum of elements
diagonalCumulative sum of elements
imagImaginary numbers from main array
amaxHighest number in the array
meanArithmetic mean along an axis
minArithmetic min along an axis
nonzeroReturns array of position of Non zero elements
partitionElements sorted in order based on nth position element

all

Check if all elements are True in a given axis ( optional )
import numpy as my_np 
my_array=my_np.array([1,4,5]) # change the elements to see result. 
print(my_np.all(my_array)) # True
axis Try two dimensional array, we will use axis to specify AND operation in different axis.
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.all(my_array,axis=0))
Output
[ True False]
out We can place the result in another array.
keepdims If keepdims=True, the output will have the same number of dimensions as the input, maintaining the original structure but with size 1 along the reduced axis. This can be useful for broadcasting when performing further operations on the result.
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.all(my_array,axis=0,keepdims=True))
Output is here
[[ True False]]

any

Check whether array elements evaluates to an array. Returns True or false.
import numpy as my_np 
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.any(my_array))
Output is here
True
axis
print(my_np.any(my_array,axis=0))
Output
[ True  True]
keepdims
print(my_np.any(my_array,axis=0,keepdims=True))
Output
[[ True  True]]

argmax

Indices of the maximum value along with an axis ( optional )
import numpy as my_np 
my_array = my_np.array([4,3,7,0,1])
print(my_np.argmax(my_array))  # 2 
my_array = my_np.array([[1,5],[3,4],[9,True],[5,False]])
print(my_np.argmax(my_array))  # 4 
axis Optional
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
print(my_np.argmax(my_array,axis=0)) # [3 0]
out Output should be stored in a defined array of matching shape and dtype.
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
my_array2=my_np.array([0,0])
my_np.argmax(my_array,axis=0,out=my_array2)
print(my_array2) # [3 0]
Using a three dimensional array
import numpy as my_np 
my_array = my_np.array([[[ 30,  1,  2],[ 3,  50,  5],[ 6,  7,  8]],
                        [[ 9, 10, 11],[32, 13, 48],[15, 16, 17]],
                        [[18, 19, 20],[21, 47, 23],[36, 25, 26]]])
print(my_array.argmax()) 
print(my_array.argmax(axis=0))
Output is here
4
[[0 2 2]
 [1 0 1]
 [2 2 2]]

argmin

Indices of the minimum value along with an axis ( optional )
import numpy as my_np 
my_array = my_np.array([4,3,7,0,1])
print(my_np.argmin(my_array))  # 3 
my_array = my_np.array([[1,5],[3,4],[9,True],[5,False]])
print(my_np.argmin(my_array))  # 7 
axis Optional
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
print(my_np.argmin(my_array,axis=0)) # [0 3]
out Optional, Result will be stored in this array. If given it must have the same shape and dtype.
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
my_array2=my_np.array([0,0])
my_np.argmin(my_array,axis=0,out=my_array2)
print(my_array2) # [0 3]

argsort

Sort in given axis ( optional ) and returns an array of indices after sorting.
import numpy as my_np 
my_array = my_np.array([6,4,5,8,3])
print(my_np.argsort(my_array)) # [4 1 2 0 3]
import numpy as my_np 
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array))
output
[[1 0]
 [0 1]
 [0 1]]
axis(optional)
import numpy as my_np 
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array,axis=0))
Output
[[2 0]
 [1 2]
 [0 1]]
kind ( optional ) type of sort algorithm, values are 'quicksort', 'mergesort', 'heapsort'
import numpy as my_np 
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array,kind='heapsort'))
order (Optional), When fields are defined then given field is considered first for sorting. After sorting input field, rest of the fields are used.
import numpy as my_np 
my_array = my_np.array([('Alex',80,50.6),('Ronal',50,60.3),('Jack',55,72.3)],
                       dtype=[('name', 'U10'), ('mark', 'i4'), ('average', 'f4')])
print(my_np.argsort(my_array,order='name')) # [0 2 1]
print(my_np.argsort(my_array,order='mark')) # [1 2 0]
print(my_np.argsort(my_array,order='average')) # [0 1 2]

choose

Select elements based on input positions. choices array and it must be broadcastable
import numpy as my_np 
my_array = [[0, 5,7, 3], [19, 15, 12, 14],[27, 23, 21, 29], [39, 33, 38, 34]]
ch=[2,3,1,0]
print(my_np.choose(ch, my_array)) # [27 33 12 3]
mode (Optional ) value can be raise( default ), clip,wrap
clip : If value is more than n-1 then it is changed to n-1.
wrap : Math module is used to keep the value in range of n-1.
Check the example to know how mode is used
import numpy as my_np 
my_array = [[0, 5,7, 3], [19, 15, 12, 14],[27, 23, 21, 29], [39, 33, 38, 34]]
ch=[2,3,1,0]
print(my_np.choose(ch, my_array)) # [27 33 12 3]
ch=[2,4,1,0]
print(my_np.choose(ch, my_array,mode='clip')) # [27 33 12 3]
print(my_np.choose(ch, my_array,mode='wrap')) # [27 5 12 3] # 4 mod 4 is 0 
ch=[2,5,1,0]
print(my_np.choose(ch, my_array,mode='wrap')) # [27 15 12 3] # 5 mod 4 is 1

clip

Elements are restricted to a maximum and minimum value.
Here minimum value is given as 10 , no maximum value ( None )
import numpy as my_np 
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,10,None)) # [10 12 10 10 17]
Maximum value is there, no minimum value
import numpy as my_np 
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,None,10)) # [ 5 10  6  9 10]
Both Maximum and Minimum value is given
import numpy as my_np 
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,10,12)) # [10 12 10 10 12]
out Optional : Matching array to store the result ( output )
import numpy as my_np 
my_array = [5,12,6,9,17]
my_out=my_np.array([0,0,0,0,0])
my_np.clip(my_array,10,12,out=my_out)
print(my_out) # [10 12 10 10 12]

compress

Returns an array with elements matching to the given pattern.
Here axis is not given so the condition is applied on the flattened array.
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
print(my_np.compress([0,1,1,1,0,1],my_array)) # [5 3 4 3]
axis Optional along the axis
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
print(my_np.compress([0,1,1],my_array,axis=0)) 
[[3 4]
 [4 3]]
out Optional : Matching array to store the output ( result )
import numpy as my_np 
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
my_out=my_np.array([[0,0],[0,0]])
my_np.compress([0,1,1],my_array,axis=0,out=my_out)
print(my_out)
Output is here
[[3 4]
 [4 3]]

copy

copy array
import numpy as my_np 
my_array = my_np.array([1,2,3,4])
my_array2=my_array.copy()
print(my_array2) # [1 2 3 4]

cumprod

Cumulative product of elements of array.
import numpy as my_np 
my_array = my_np.array([1,2,3,4])
print(my_np.cumprod(my_array)) # [ 1  2  6 24]
axis : Optional, Cumulative product based on the specified axis. If no axis is given ( default) then flattened array is used ( above code ). cumprod with axis=0
import numpy as my_np 
my_array = my_np.array([[1,2],
                       [3,4],
                        [5,6]])
print(my_np.cumprod(my_array,axis=0))
Output is here
[[ 1  2]
 [ 3  8]
 [15 48]]
axis=1cumprod with axis=1
import numpy as my_np 
my_array = my_np.array([[1,2],
                        [3,4],
                        [5,6]])
print(my_np.cumprod(my_array,axis=1))
Output is here
[[ 1  2]
 [ 3 12]
 [ 5 30]]
out Optional , output can be stored in the array
import numpy as my_np 
my_array = my_np.array([1,2,3,4])
my_out=my_np.array([0,0,0,0])
my_np.cumprod(my_array,out=my_out) 
print(my_out) # [ 1  2  6 24]

cumsum

Cumulative sum of elements of array.
import numpy as my_np 
my_array = my_np.array([1,2,3,4])
print(my_np.cumsum(my_array)) # [ 1  3  6 10]
axis : Optional, Cumulative sum based on the specified axis. If no axis is given ( default) then flattened array is used ( above code ). cumsum with axis=0
import numpy as my_np 
my_array = my_np.array([[1,2],
                        [3,4],
                        [5,6]])
print(my_np.cumsum(my_array,axis=0)) 
Output is here
[[ 1  2]
 [ 4  6]
 [ 9 12]]
axis=1 cumsum with axis=1
import numpy as my_np 
my_array = my_np.array([[1,2],
                        [3,4],
                        [5,6]])
print(my_np.cumsum(my_array,axis=1))  
Output is here
[[ 1  3]
 [ 3  7]
 [ 5 11]]
out Optional , output can be stored in the array
import numpy as my_np 
my_array = my_np.array([1,2,3,4])
my_out=my_np.array([0,0,0,0])
my_np.cumsum(my_array,out=my_out) 
print(my_out) # [ 1  3  6 10]

diagonal

Returns the diagonal elements of the input array.
import numpy as my_np 
my_array = my_np.array([[1,2],[3,4],[5,6]])
print(my_np.diagonal(my_array)) # [1 4]
import numpy as my_np 
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array)) # [1 5 9]
axis1 axis2 : Optional, default for first axis1 = 0 and for second it is axis2=1
import numpy as my_np 
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array,axis1=0,axis2=1)) # [1 5 9]
offset int , optional , offset from main diagonal.
import numpy as my_np 
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array,offset=1)) # [2 6]

imag

Complex Number Imaginary part We can get imaginary parts of an array with complex numbers.
import numpy as my_np 
my_array = my_np.array([[1+2j,2-4j],[3+3j,4-8j]])
print(my_array.imag)
Output
[[ 2. -4.]
 [ 3. -8.]]

amax

Maximum value of the array
import numpy as my_np 
my_array = my_np.array([2,1,0,3]) 
print(my_np.amax(my_array)) # 3
axis Optional : Maximum value along the given axis.
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
print(my_np.amax(my_array)) # 7 
print(my_np.amax(my_array,axis=0)) # [6 7] 
print(my_np.amax(my_array,axis=1)) # [5 6 2 7] 
out Optional, output can be stored in the given array.
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
my_out=my_np.array([0,0])
my_np.amax(my_array,axis=0,out=my_out)
print(my_out) # [6 7]
keepdims optional , bool
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
print(my_np.amax(my_array,axis=0,keepdims=True)) # [6 7] 

mean

Arithmetic mean of the elements, if axis is not provided then average is taken over the flattened array.
import numpy as my_np 
my_array = my_np.array([[1,2],[3,4],[5,6]]) 
print(my_np.mean(my_array)) # 3.5 
axis: optional, mean along the given axis
import numpy as my_np 
my_array = my_np.array([[1,2],[3,4],[5,6]]) 
print(my_np.mean(my_array,axis=0)) # [3. 4.] 
import numpy as my_np 
my_array = my_np.array([[1,2],[3,4],[5,6]]) 
print(my_np.mean(my_array,axis=1)) # [1.5 3.5 5.5] 
dtypeOptional , type to use while calculating mean.
import numpy as my_np 
my_array = my_np.array([[1.5,2.4],[3.6,4.8],[5.2,6.4]]) 
print((my_np.mean(my_array,dtype=my_np.int16))) # 3 
print((my_np.mean(my_array,dtype=my_np.float32))) # 3.9833333
print((my_np.mean(my_array,dtype=my_np.float64))) # 3.983333333333333
out: Optional output can be stored in the given array.

min

Minimum value of the array
import numpy as my_np 
my_array = my_np.array([2,1,3]) 
print(my_np.amin(my_array)) # 1
axis Optional : Minimum value along the given axis.
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
print(my_np.amin(my_array)) # 0 
print(my_np.amin(my_array,axis=0)) # [0 1] 
print(my_np.amin(my_array,axis=1)) # [4 3 1 0]  
out Optional, output can be stored in the given array.
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
my_out=my_np.array([0,0])
my_np.amin(my_array,axis=0,out=my_out)
print(my_out) # [0 1]
keepdims optional , bool
import numpy as my_np 
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]]) 
print(my_np.amin(my_array,axis=0,keepdims=True)) # [0 1]  

nonzero

Returns array of positions of non zero elements
import numpy as my_np 
my_array = my_np.array([2,1,0,3]) 
print(my_np.nonzero(my_array)) # (array([0, 1, 3], dtype=int64),)
import numpy as my_np 
my_array = my_np.array([[2,-11,3],[14,3,-5],[-15,6,7]]) 
print(my_np.nonzero(my_array>1)) 
Output
(array([0, 0, 1, 1, 2, 2], dtype=int64), array([0, 2, 0, 1, 1, 2], dtype=int64))

partition

Elements are sorted based on value at kth position, smaller elements are placed before it and equal or higher elements behind it.
import numpy as my_np 
my_array = my_np.array([2,1,0,3]) 
print(my_np.partition(my_array,2)) # [0 1 2 3]
Numpy
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer