all | Test all elements in given axis is True or not |
any | Test all elements in given axis is True or not |
argmax | Position of Max value along any axis |
argmin | Position of Min value along any axis |
argsort | Return the indices after sorting |
choose | Select elements based on position |
clip | Set a maximum and minimum values for elements |
compress | Selected elements based on condition |
copy | Copy one array to another array |
cumprod | Cumulative product of elements |
cumsum | Cumulative sum of elements |
diagonal | Cumulative sum of elements |
imag | Imaginary numbers from main array |
amax | Highest number in the array |
mean | Arithmetic mean along an axis |
min | Arithmetic min along an axis |
nonzero | Returns array of position of Non zero elements |
partition | Elements sorted in order based on nth position element |
import numpy as my_np
my_array=my_np.array([1,4,5]) # change the elements to see result.
print(my_np.all(my_array)) # True
axis
Try two dimensional array, we will use axis to specify AND operation in different axis.
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.all(my_array,axis=0))
Output
[ True False]
out
We can place the result in another array.
keepdims
If keepdims=True, the output will have the same number of dimensions as the input, maintaining the original structure but with size 1 along the reduced axis. This can be useful for broadcasting when performing further operations on the result.
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.all(my_array,axis=0,keepdims=True))
Output is here
[[ True False]]
import numpy as my_np
my_array = my_np.array([[1,2],[3,False],[4,True],[5,False]])
print(my_np.any(my_array))
Output is here
True
axis
print(my_np.any(my_array,axis=0))
Output
[ True True]
keepdims
print(my_np.any(my_array,axis=0,keepdims=True))
Output
[[ True True]]
import numpy as my_np
my_array = my_np.array([4,3,7,0,1])
print(my_np.argmax(my_array)) # 2
my_array = my_np.array([[1,5],[3,4],[9,True],[5,False]])
print(my_np.argmax(my_array)) # 4
axis
Optional
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
print(my_np.argmax(my_array,axis=0)) # [3 0]
out
Output should be stored in a defined array of matching shape and dtype.
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
my_array2=my_np.array([0,0])
my_np.argmax(my_array,axis=0,out=my_array2)
print(my_array2) # [3 0]
Using a three dimensional array
import numpy as my_np
my_array = my_np.array([[[ 30, 1, 2],[ 3, 50, 5],[ 6, 7, 8]],
[[ 9, 10, 11],[32, 13, 48],[15, 16, 17]],
[[18, 19, 20],[21, 47, 23],[36, 25, 26]]])
print(my_array.argmax())
print(my_array.argmax(axis=0))
Output is here
4
[[0 2 2]
[1 0 1]
[2 2 2]]
import numpy as my_np
my_array = my_np.array([4,3,7,0,1])
print(my_np.argmin(my_array)) # 3
my_array = my_np.array([[1,5],[3,4],[9,True],[5,False]])
print(my_np.argmin(my_array)) # 7
axis
Optional
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
print(my_np.argmin(my_array,axis=0)) # [0 3]
out
Optional, Result will be stored in this array. If given it must have the same shape and dtype.
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,True],[5,False]])
my_array2=my_np.array([0,0])
my_np.argmin(my_array,axis=0,out=my_array2)
print(my_array2) # [0 3]
import numpy as my_np
my_array = my_np.array([6,4,5,8,3])
print(my_np.argsort(my_array)) # [4 1 2 0 3]
import numpy as my_np
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array))
output
[[1 0]
[0 1]
[0 1]]
axis
(optional)
import numpy as my_np
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array,axis=0))
Output
[[2 0]
[1 2]
[0 1]]
kind
( optional ) type of sort algorithm, values are 'quicksort', 'mergesort', 'heapsort'
import numpy as my_np
my_array = my_np.array([[6,4],[5,8],[3,7]])
print(my_np.argsort(my_array,kind='heapsort'))
order
(Optional), When fields are defined then given field is considered first for sorting. After sorting input field, rest of the fields are used.
import numpy as my_np
my_array = my_np.array([('Alex',80,50.6),('Ronal',50,60.3),('Jack',55,72.3)],
dtype=[('name', 'U10'), ('mark', 'i4'), ('average', 'f4')])
print(my_np.argsort(my_array,order='name')) # [0 2 1]
print(my_np.argsort(my_array,order='mark')) # [1 2 0]
print(my_np.argsort(my_array,order='average')) # [0 1 2]
choices
array and it must be broadcastable
import numpy as my_np
my_array = [[0, 5,7, 3], [19, 15, 12, 14],[27, 23, 21, 29], [39, 33, 38, 34]]
ch=[2,3,1,0]
print(my_np.choose(ch, my_array)) # [27 33 12 3]
mode
(Optional ) value can be raise( default ), clip,wrapimport numpy as my_np
my_array = [[0, 5,7, 3], [19, 15, 12, 14],[27, 23, 21, 29], [39, 33, 38, 34]]
ch=[2,3,1,0]
print(my_np.choose(ch, my_array)) # [27 33 12 3]
ch=[2,4,1,0]
print(my_np.choose(ch, my_array,mode='clip')) # [27 33 12 3]
print(my_np.choose(ch, my_array,mode='wrap')) # [27 5 12 3] # 4 mod 4 is 0
ch=[2,5,1,0]
print(my_np.choose(ch, my_array,mode='wrap')) # [27 15 12 3] # 5 mod 4 is 1
import numpy as my_np
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,10,None)) # [10 12 10 10 17]
Maximum value is there, no minimum value
import numpy as my_np
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,None,10)) # [ 5 10 6 9 10]
Both Maximum and Minimum value is given
import numpy as my_np
my_array = [5,12,6,9,17]
print(my_np.clip(my_array,10,12)) # [10 12 10 10 12]
out
Optional : Matching array to store the result ( output )
import numpy as my_np
my_array = [5,12,6,9,17]
my_out=my_np.array([0,0,0,0,0])
my_np.clip(my_array,10,12,out=my_out)
print(my_out) # [10 12 10 10 12]
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
print(my_np.compress([0,1,1,1,0,1],my_array)) # [5 3 4 3]
axis
Optional along the axis
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
print(my_np.compress([0,1,1],my_array,axis=0))
[[3 4]
[4 3]]
out
Optional : Matching array to store the output ( result )
import numpy as my_np
my_array = my_np.array([[1,5],[3,4],[4,3],[5,7]])
my_out=my_np.array([[0,0],[0,0]])
my_np.compress([0,1,1],my_array,axis=0,out=my_out)
print(my_out)
Output is here
[[3 4]
[4 3]]
import numpy as my_np
my_array = my_np.array([1,2,3,4])
my_array2=my_array.copy()
print(my_array2) # [1 2 3 4]
import numpy as my_np
my_array = my_np.array([1,2,3,4])
print(my_np.cumprod(my_array)) # [ 1 2 6 24]
axis
: Optional, Cumulative product based on the specified axis. If no axis is given ( default) then flattened array is used ( above code ).
import numpy as my_np
my_array = my_np.array([[1,2],
[3,4],
[5,6]])
print(my_np.cumprod(my_array,axis=0))
Output is here
[[ 1 2]
[ 3 8]
[15 48]]
axis=1import numpy as my_np
my_array = my_np.array([[1,2],
[3,4],
[5,6]])
print(my_np.cumprod(my_array,axis=1))
Output is here
[[ 1 2]
[ 3 12]
[ 5 30]]
out
Optional , output can be stored in the array
import numpy as my_np
my_array = my_np.array([1,2,3,4])
my_out=my_np.array([0,0,0,0])
my_np.cumprod(my_array,out=my_out)
print(my_out) # [ 1 2 6 24]
import numpy as my_np
my_array = my_np.array([1,2,3,4])
print(my_np.cumsum(my_array)) # [ 1 3 6 10]
axis
: Optional, Cumulative sum based on the specified axis. If no axis is given ( default) then flattened array is used ( above code ).
import numpy as my_np
my_array = my_np.array([[1,2],
[3,4],
[5,6]])
print(my_np.cumsum(my_array,axis=0))
Output is here
[[ 1 2]
[ 4 6]
[ 9 12]]
axis=1
import numpy as my_np
my_array = my_np.array([[1,2],
[3,4],
[5,6]])
print(my_np.cumsum(my_array,axis=1))
Output is here
[[ 1 3]
[ 3 7]
[ 5 11]]
out
Optional , output can be stored in the array
import numpy as my_np
my_array = my_np.array([1,2,3,4])
my_out=my_np.array([0,0,0,0])
my_np.cumsum(my_array,out=my_out)
print(my_out) # [ 1 3 6 10]
import numpy as my_np
my_array = my_np.array([[1,2],[3,4],[5,6]])
print(my_np.diagonal(my_array)) # [1 4]
import numpy as my_np
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array)) # [1 5 9]
axis1 axis2
: Optional, default for first axis1 = 0 and for second it is axis2=1
import numpy as my_np
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array,axis1=0,axis2=1)) # [1 5 9]
offset
int , optional , offset from main diagonal.
import numpy as my_np
my_array = my_np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(my_np.diagonal(my_array,offset=1)) # [2 6]
import numpy as my_np
my_array = my_np.array([[1+2j,2-4j],[3+3j,4-8j]])
print(my_array.imag)
Output
[[ 2. -4.]
[ 3. -8.]]
import numpy as my_np
my_array = my_np.array([2,1,0,3])
print(my_np.amax(my_array)) # 3
axis
Optional : Maximum value along the given axis.
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
print(my_np.amax(my_array)) # 7
print(my_np.amax(my_array,axis=0)) # [6 7]
print(my_np.amax(my_array,axis=1)) # [5 6 2 7]
out
Optional, output can be stored in the given array.
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
my_out=my_np.array([0,0])
my_np.amax(my_array,axis=0,out=my_out)
print(my_out) # [6 7]
keepdims
optional , bool
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
print(my_np.amax(my_array,axis=0,keepdims=True)) # [6 7]
import numpy as my_np
my_array = my_np.array([[1,2],[3,4],[5,6]])
print(my_np.mean(my_array)) # 3.5
axis
: optional, mean along the given axis
import numpy as my_np
my_array = my_np.array([[1,2],[3,4],[5,6]])
print(my_np.mean(my_array,axis=0)) # [3. 4.]
import numpy as my_np
my_array = my_np.array([[1,2],[3,4],[5,6]])
print(my_np.mean(my_array,axis=1)) # [1.5 3.5 5.5]
dtype
Optional , type to use while calculating mean.
import numpy as my_np
my_array = my_np.array([[1.5,2.4],[3.6,4.8],[5.2,6.4]])
print((my_np.mean(my_array,dtype=my_np.int16))) # 3
print((my_np.mean(my_array,dtype=my_np.float32))) # 3.9833333
print((my_np.mean(my_array,dtype=my_np.float64))) # 3.983333333333333
out
: Optional output can be stored in the given array.
import numpy as my_np
my_array = my_np.array([2,1,3])
print(my_np.amin(my_array)) # 1
axis
Optional : Minimum value along the given axis.
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
print(my_np.amin(my_array)) # 0
print(my_np.amin(my_array,axis=0)) # [0 1]
print(my_np.amin(my_array,axis=1)) # [4 3 1 0]
out
Optional, output can be stored in the given array.
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
my_out=my_np.array([0,0])
my_np.amin(my_array,axis=0,out=my_out)
print(my_out) # [0 1]
keepdims
optional , bool
import numpy as my_np
my_array = my_np.array([[5,4],[6,3],[2,1],[0,7]])
print(my_np.amin(my_array,axis=0,keepdims=True)) # [0 1]
import numpy as my_np
my_array = my_np.array([2,1,0,3])
print(my_np.nonzero(my_array)) # (array([0, 1, 3], dtype=int64),)
import numpy as my_np
my_array = my_np.array([[2,-11,3],[14,3,-5],[-15,6,7]])
print(my_np.nonzero(my_array>1))
Output
(array([0, 0, 1, 1, 2, 2], dtype=int64), array([0, 2, 0, 1, 1, 2], dtype=int64))
import numpy as my_np
my_array = my_np.array([2,1,0,3])
print(my_np.partition(my_array,2)) # [0 1 2 3]
NumpyAuthor
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.