random_sample random number over an interval

We get continuous uniform random numbers over an interval ( below ).
dimensionInt, optional , the dimension of returned array
Output is an array of numbers.

Example 1

import numpy as np
my_data=np.random.random_sample()
print(my_data) # 0.8541225764575974

Example 2

my_data=np.random.random_sample(size=(2,3))
Output
[[0.48039485 0.87647483 0.02363604]
 [0.29335428 0.46199051 0.68764865]]

Example 3

my_data=np.random.random_sample(size=(2,3,1))
Output
[[[0.8713458 ]
  [0.98421453]
  [0.69791198]]

 [[0.5539756 ]
  [0.71706405]
  [0.22790952]]]

Using an interval

# over a interval 5,8
import numpy as np
my_data=(8-5)*np.random.random_sample(size=(2,3))+5
print(my_data)
Output
[[6.65899659 5.75375084 7.45066966]
 [7.99360791 7.88499591 5.07648928]]

range -3,2

# over a interval -3,2
import numpy as np
my_data=(2-(-3))*np.random.random_sample(size=(2,3))-3
print(my_data)
Output
[[-2.16590208 -1.1939938  -0.95480836]
 [ 1.8298811   0.12518495 -1.02893354]]
Numpy random.randint , Random Integers
Subhendu Mohapatra — author at plus2net
Subhendu Mohapatra

Author

🎥 Join me live on YouTube

Passionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.



Subscribe to our YouTube Channel here



plus2net.com







Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
Python Tkinter Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles Contact us
©2000-2025   plus2net.com   All rights reserved worldwide Privacy Policy Disclaimer