# Numpy reshape()

Numpy

``numpy.reshape(a, newshape, order='C')``
Return reshaped array using the newshape as given.
 `a` array input `newshape` New shape for the original array. Integer for 1-D array, tuple for multi Dimensional. `order` {‘C’, ‘F’, ‘A’}, optional

 Shape: (3, 4) Dimension 2 Shape: (4, 3) Dimension 2
1. While reshaping data of the original array will not be lost.
2. The reshape array must be compatible with original shape , otherwise value error will be raised.
We will try to use reshape() with different dimensional arrays. To Understand the difference we will first use the shape() to get the tuple or integer about the Array and then use reshape() and get the details of the updated array. You can read more on how to create arrays by using ones(). We will input different shape() to create the array by using ones().

Along with shape() we will display the dimension of the array by using ndim

## One dimensional array

``````import numpy as np
ar=np.ones((6,))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((2,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)``````
Output
``````[1. 1. 1. 1. 1. 1.]
Shape:  (6,)
Dimension  1
##After using reshpae()##
[[1. 1. 1.]
[1. 1. 1.]]
Shape:  (2, 3)
Dimension  2``````

## Two dimensional array

``````import numpy as np
ar=np.ones((3,2))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((2,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)``````
Output
``````[[1. 1.]
[1. 1.]
[1. 1.]]
Shape:  (3, 2)
Dimension  2
##After using reshpae()##
[[1. 1. 1.]
[1. 1. 1.]]
Shape:  (2, 3)
Dimension  2``````

## Three dimensional array

``````import numpy as np
ar=np.ones((3,2,3))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)

ar=ar.reshape((2,3,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)``````
Output
``````[[[1. 1. 1.]
[1. 1. 1.]]

[[1. 1. 1.]
[1. 1. 1.]]

[[1. 1. 1.]
[1. 1. 1.]]]
Shape:  (3, 2, 3)
Dimension  3
##After using reshpae()##
[[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]]
Shape:  (2, 3, 3)
Dimension  3``````

## Four dimensional array

``````import numpy as np
ar=np.ones((3,2,3,4))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)

ar=ar.reshape((9,8))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)``````
Output
``````[[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]

[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]

[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]]
Shape:  (3, 2, 3, 4)
Dimension  4
##After using reshpae()##
[[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]]
Shape:  (9, 8)
Dimension  2``````

Subscribe to our YouTube Channel here

## Subscribe

* indicates required
Subscribe to plus2net

plus2net.com