numpy.reshape(a, newshape, order='C')
Return reshaped array using the newshape as given.
a | array input |
newshape | New shape for the original array. Integer for 1-D array, tuple for multi Dimensional. |
order | {‘C’, ‘F’, ‘A’}, optional |
![]() | ![]() |
Shape: (3, 4) Dimension 2 | Shape: (4, 3) Dimension 2 |
import numpy as np
ar=np.ones((6,))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((2,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
Output
[1. 1. 1. 1. 1. 1.]
Shape: (6,)
Dimension 1
##After using reshpae()##
[[1. 1. 1.]
[1. 1. 1.]]
Shape: (2, 3)
Dimension 2
import numpy as np
ar=np.ones((3,2))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((2,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
Output
[[1. 1.]
[1. 1.]
[1. 1.]]
Shape: (3, 2)
Dimension 2
##After using reshpae()##
[[1. 1. 1.]
[1. 1. 1.]]
Shape: (2, 3)
Dimension 2
import numpy as np
ar=np.ones((3,2,3))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((2,3,3))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
Output
[[[1. 1. 1.]
[1. 1. 1.]]
[[1. 1. 1.]
[1. 1. 1.]]
[[1. 1. 1.]
[1. 1. 1.]]]
Shape: (3, 2, 3)
Dimension 3
##After using reshpae()##
[[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]]
Shape: (2, 3, 3)
Dimension 3
import numpy as np
ar=np.ones((3,2,3,4))
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
ar=ar.reshape((9,8))
print("##After using reshpae()##")
print(ar)
print("Shape: ", ar.shape)
print("Dimension ", ar.ndim)
Output
[[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]
[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]
[[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]]
Shape: (3, 2, 3, 4)
Dimension 4
##After using reshpae()##
[[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]]
Shape: (9, 8)
Dimension 2
Numpyeye()
bincount()
arange()
linspace()