Creating categorical data types
Using astype()
import pandas as pd
my_dict={'grade':['a', 'c', 'b', 'b','b','c']} # dictionary
my_data = pd.DataFrame(data=my_dict)
my_data['grade']=my_data['grade'].astype('category')
print(my_data.dtypes)
output
grade category
dtype: object
Using series.
Use dtype='category'
while creating a series.
import pandas as pd
my_df=pd.Series(['d','a','b','c','a','c'],dtype='category')
print(my_df.dtypes) # category
Using cut()
We can use cut() function to group data in bins.
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,60,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data['my_cut'] = pd.cut(x=my_data['MATH'],bins=[1, 50, 70, 100])
print(my_data['my_cut'].dtypes) # category
« Pandas
Data Cleaning
dtypes()
to_timedelta()
select_dtypes()
timedelta64()
← Subscribe to our YouTube Channel here