import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.count())
Output
NAME 6
ID 6
MATH 6
ENGLISH 6
print(my_data.count(axis=0))
Output is here
NAME 6
ID 6
MATH 6
ENGLISH 6
Now let us use axis=1
print(my_data.count(axis=1))
Output
0 4
1 4
2 4
3 4
4 4
5 4
Handling NA data
import numpy as np
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.count(axis=1))
Output
0 4
1 4
2 3
3 4
4 4
5 4
count() has not considered np.nan so the third row is 3.
import numpy as np
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data.set_index(['NAME','ID']).count(level='NAME')
Output
MATH ENGLISH
NAME
Alex 1 0
Jack 1 1
King 1 1
Raju 1 1
Ravi 1 1
Ron 1 1
PandasPlotting graphs
Filtering of Data
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.