Pandas DataFrame drop()

We can drop rows or columns by using drop().
DataFrame.drop(labels=None, axis=0, index=None, columns=None,
 level=None, inplace=False, errors='raise')
This returns DataFrame without the removed index or column labels.
import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'ENGLISH':[80,70,40,50,60,30]}
df = pd.DataFrame(data=my_dict)
df.drop(columns='ID')
print(df)
Output
   NAME  ID  MATH  ENGLISH
0  Ravi   1    80       80
1  Raju   2    40       70
2  Alex   3    70       40
3   Ron   4    70       50
4  King   5    70       60
5  Jack   6    30       30
We can see ID column is not deleted. Here the original DataFrame is retained. Now we will change the last lines like this.
df=df.drop(columns='ID')
print(df)
Now our output will change by removing ID column.
   NAME  MATH  ENGLISH
0  Ravi    80       80
1  Raju    40       70
2  Alex    70       40
3   Ron    70       50
4  King    70       60
5  Jack    30       30
Remove all rows and keep the columns.
df.drop(df.index,inplace=True)

labels

We can add the option lables to delete index or column lables.
df.drop(labels=[2,4])
Output
NAME	ID	MATH	ENGLISH
0	Ravi	1	80	80
1	Raju	2	40	70
3	Ron	4	70	50
5	Jack	6	30	30
Now Index 2 and 4 are removed.

labels

We will remove columns by using labels option.
df.drop(labels=['ID','MATH'],axis=1,inplace=True)
Two columns ID and MATH are removed.
	NAME	ENGLISH
0	Ravi	80
1	Raju	70
2	Alex	40
3	Ron	50
4	King	60
5	Jack	30

columns

We can input single or a list of columns to remove.
df.drop(columns=['ID','MATH'])
Output
	NAME	ENGLISH
0	Ravi	80
1	Raju	70
2	Alex	40
3	Ron	50
4	King	60
5	Jack	30

index

We can use single label or list
df.drop(index=2,columns='MATH')
Output
	NAME	ID	ENGLISH
0	Ravi	1	80
1	Raju	2	70
3	Ron	4	50
4	King	5	60
5	Jack	6	30
index =2 or row 3 is removed.
df.drop(index=2,axis=0)
Output

NAME	ID	MATH	ENGLISH
0	Ravi	1	80	80
1	Raju	2	40	70
3	Ron	4	70	50
4	King	5	70	60
5	Jack	6	30	30

errors

Default value is 'raise'. We can set it to errors='ignore'

Deleting rows

Delete row which id is given.
df.drop(df[df['ID'] == 2].index, inplace = True) # remove matching value
#df.drop(df[df['NAME'] == 'Ravi'].index, inplace = True)
We can keep some rows based on condition and remove rest of the rows, here we are not using drop() and using loc
df=df.loc[df["MATH"] >= 45 ] # Keep all rows based on condition
df=df.loc[df["ID"] == 3 ] # Keep only  row based on condition
Delete rows with multiple matching conditions. Here & ( and ) is used to match both the conditions. Here one record is deleted.
my_delete=df[(df['NAME']=='Ravi') & (df['ID']==1)].index
df.drop(my_delete,inplace=True)
Condition can be changed by using OR matching , here two records will be deleted.
my_delete=df[(df['NAME']=='Ravi') | (df['ID']==2)].index
Delete records with more than 256 length in column Linking page.
my_delete=df[df['Linking page'].str.len() >256].index
df.drop(my_delete,inplace=True)
Delete with and ( & ) combination ( two conditions to match ) . Lenth of data in Page column is less than 12 and more than 3 to be deleted.
my_delete=df[(df['Page'].str.len() <12) & (df['Page'].str.len() >3)].index

Delete specific rows

Delete 1 ,3 and 7 rows
df.drop([1,3,7],inplace=True)
Delete last two rows
df.drop(df.tail(2).index,inplace=True)
OR ( select all without last two )
df = df.iloc[:-2]
Pandas Plotting graphs Filtering of Data
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com



    Post your comments , suggestion , error , requirements etc here





    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer