
import pandas as pd 
sales=pd.read_csv("sales.csv") # reading from csv file
print(sales)   sale_id  c_id  p_id  product  qty store
0        1     2     3  Monitor    2   ABC
1        2     2     4      CPU    1   DEF
2        3     1     3  Monitor    3   ABC
3        4     4     2      RAM    2   DEF
4        5     2     3  Monitor    3   ABC
5        6     3     3  Monitor    2   DEF
6        7     2     2      RAM    3   ABC
7        8     3     2      RAM    2   DEF
8        9     2     3  Monitor    2   ABCprint(sales.groupby(['product','p_id'])[['qty']].sum())              qty
product p_id     
CPU     4       1
Monitor 3      12
RAM     2       7import pandas as pd 
sales=pd.read_csv("sales.csv") 
#print(sales)
# using groupby get the list of products and its sum sold
my_sale=sales.groupby(['product','p_id', 'store'])[['qty']].sum()
#print(my_sale)
product=pd.read_csv("products.csv")
#print(product)
my_sum=pd.merge(my_sale,product,how='left',on='p_id')
#print(my_sum)
#We added one more column total_sales by multiplying total sales with price. 
my_sum['total_sale']=my_sum['qty']*my_sum['price']
print(my_sum)   p_id  qty  product  price  total_sale
0     4    1      CPU     55          55
1     3   10  Monitor     75         750
2     3    2  Monitor     75         150
3     2    3      RAM     90         270
4     2    4      RAM     90         360my_sale=sales.groupby(['product','p_id', 'store'])[['qty']].sum().reset_index()  product_x  p_id store  qty product_y  price  total_sale
0       CPU     4   DEF    1       CPU     55          55
1   Monitor     3   ABC   10   Monitor     75         750
2   Monitor     3   DEF    2   Monitor     75         150
3       RAM     2   ABC    3       RAM     90         270
4       RAM     2   DEF    4       RAM     90         360import pandas as pd 
sales=pd.read_csv("sales.csv") 
print(sales.groupby(['product','p_id','store'])[['qty']].sum())                    qty
product p_id store     
CPU     4    DEF      1
Monitor 3    ABC     10
             DEF      2
RAM     2    ABC      3
             DEF      4import pandas as pd 
sales=pd.read_csv("sales.csv") 
#print(sales)
product=pd.read_csv("products.csv")
my_sum=pd.merge(sales,product,how='left',on=['p_id'])
my_sum['sales_total']=my_sum['qty']*my_sum['price']
print(my_sum.groupby(['store'])[['qty','sales_total']].sum())       qty  sales_total
store                  
ABC     13         1020
DEF      7          565import pandas as pd 
products=pd.read_csv("products.csv") 
sales=pd.read_csv("sales.csv") 
my_data=pd.merge(sales,products,on='p_id',how='right')
#print(my_data['sale_id'].isna())
my_data=my_data[my_data['sale_id'].isnull()] # products which are not sold
print(my_data)
#print(my_data.loc[:,'product_y']) # to display only produts column	sale_id	c_id	p_id product_x qty	store	product_y	price
9	NaN	NaN	1	NaN	NaN	NaN	Hard Disk	80
10	NaN	NaN	5	NaN	NaN	NaN	Keyboard	20
11	NaN	NaN	6	NaN	NaN	NaN	Mouse	10
12	NaN	NaN	7	NaN	NaN	NaN	Motherboard	50
13	NaN	NaN	8	NaN	NaN	NaN	Power supply	20import pandas as pd 
sales=pd.read_csv("sales.csv") 
customer=pd.read_csv("customer.csv") 
my_data=pd.merge(sales,customer,on='c_id',how='right')
my_data=my_data[my_data['sale_id'].isnull()] # products which are not sold
#print(my_data)
print(my_data.loc[:,'Customer']) # to display customers who has not purchased 9     King
10    Ronn
11     Jem
12     Tom
Name: Customer, dtype: object 
      Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.
