Pandas DataFrame get_dummies()

get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)
From categorical variables to dummy / indicator vaiables by using get_dummies().

selfarray, DataFrame
prefixstr (optional ), string to append to column names.
prefix_sepstr ( Optional ),default is '_', Separator to be used in column names
dummy_naBool ( Optional ),default is False, Column is used to indicate NaN values.
columnslist ( Optional ),default is None, columns to be encoded.
sparsedummy columns to be sparse or not
drop_firstBool ( default False ), to remove first level of categorical levels
import pandas as pd 
my_dict={'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'CLASS1':['Four','Three','Three','Four','Five','Three']}
my_data = pd.DataFrame(data=my_dict)
print(pd.get_dummies(my_data))
Output
   ID  MATH  CLASS1_Five  CLASS1_Four  CLASS1_Three
0   1    80            0            1             0
1   2    40            0            0             1
2   3    70            0            0             1
3   4    70            0            1             0
4   5    70            1            0             0
5   6    30            0            0             1
Output
   ID  MATH  CLASS1_Five  CLASS1_Four  CLASS1_Three
0   1    80            0            1             0
1   2    40            0            0             1
2   3    70            0            0             1
3   4    70            0            1             0
4   5    70            1            0             0
5   6    30            0            0             1

prefix

String to be added before column name.
print(pd.get_dummies(my_data,prefix='my'))
Output
   ID  MATH  my_Five  my_Four  my_Three
0   1    80        0        1         0
1   2    40        0        0         1
2   3    70        0        0         1
3   4    70        0        1         0
4   5    70        1        0         0
5   6    30        0        0         1

prefex_sep

Separator to be used between column name and prefix. Default value is #
print(pd.get_dummies(my_data,prefix='my',prefix_sep='-'))
Output
   ID  MATH  my-Five  my-Four  my-Three
0   1    80        0        1         0
1   2    40        0        0         1
2   3    70        0        0         1
3   4    70        0        1         0
4   5    70        1        0         0
5   6    30        0        0         1

columns

List of Column names on which get_dummies() will be applied. By default categorical column is used.
print(pd.get_dummies(my_data,prefix='my',columns=['CLASS1','MATH']))
Output
   ID  my_Five  my_Four  my_Three  my_30  my_40  my_70  my_80
0   1        0        1         0      0      0      0      1
1   2        0        0         1      0      1      0      0
2   3        0        0         1      0      0      1      0
3   4        0        1         0      0      0      1      0
4   5        1        0         0      0      0      1      0
5   6        0        0         1      1      0      0      0

spares

Default value is False ( boolean ).
print(pd.get_dummies(my_data,prefix='my',sparse=True))

drop_first

Boolean , default value is False. If it is set to True then first level is removed.
print(pd.get_dummies(my_data,prefix='my',drop_first=True))
Output
   ID  MATH  my_Four  my_Three
0   1    80        1         0
1   2    40        0         1
2   3    70        0         1
3   4    70        1         0
4   5    70        0         0
5   6    30        0         1
Pandas Plotting graphs mean min sum len Filtering of Data
Subhendu Mohapatra — author at plus2net
Subhendu Mohapatra

Author

🎥 Join me live on YouTube

Passionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.



Subscribe to our YouTube Channel here



plus2net.com







Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
Python Tkinter Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles Contact us
©2000-2025   plus2net.com   All rights reserved worldwide Privacy Policy Disclaimer