Pandas DataFrame max()

We can get maximum number in rows or columns by using max().

import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.max())
Output
NAME       Ron
ID           6
MATH        80
ENGLISH     80
What is the highest mark in MATH ?
print(my_data['MATH'].max()) # 80 
We can get the row or details of the record who got maximum mark in MATH
print(my_data[my_data['MATH'].max()==my_data['MATH']])
Output is here
   NAME  ID  MATH  ENGLISH
0  Ravi   1    80       80

Using axis

Axis of Two dimensional array We will use option axis=0 ( default ) by adding to above code.

( The last line is only changed )
print(my_data.max(axis=1))
Output is here
0    80
1    70
2    70
3    70
4    70
5    30

level option

For MultiIndex (hierarchical) axis we can specify the level.
import pandas as pd 
my_dict=pd.MultiIndex.from_arrays(
         [[1,2,3,4,5,6],
         [80,40,70,70,70,30],
         [80,70,40,50,60,30]],
names=['id','math','eng'])
my_data = pd.Series([4, 2, 0, 8,3,4], name='marks', index=my_dict)
print(my_data.max(level='math'))
Output
math
80    4
40    2
70    8
30    4

Handling NA data using skipna option

We will use skipna=True to ignore the null or NA data. Let us check what happens if it is set to True ( skipna=True )
import numpy as np
import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.max(skipna=True))
Output
NAME       Ron
ID           6
MATH        80
ENGLISH     80

numeric_only

Default value is None, we can set it to True ( numeric_only=True ) to include only float, int, boolean columns. We can included all by setting it to False ( numeric_only=False ) . Let us see the outputs .
print(my_data.max(numeric_only=False))
Output is here
NAME       Ron
ID           6
MATH        80
ENGLISH     80
Pandas Data Analysis min sum len std Filtering of Data
Subhendu Mohapatra — author at plus2net
Subhendu Mohapatra

Author

🎥 Join me live on YouTube

Passionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.



Subscribe to our YouTube Channel here



plus2net.com







Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
Python Tkinter Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles Contact us
©2000-2025   plus2net.com   All rights reserved worldwide Privacy Policy Disclaimer