« Pandas
We can get maximum number in rows or columns by using max().
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.max())
Output
NAME Ron
ID 6
MATH 80
ENGLISH 80
What is the highest mark in MATH ?
print(my_data['MATH'].max()) # 80
We can get the row or details of the record who got maximum mark in MATH
print(my_data[my_data['MATH'].max()==my_data['MATH']])
Output is here
NAME ID MATH ENGLISH
0 Ravi 1 80 80
Using axis
We will use option axis=0 ( default ) by adding to above code.
( The last line is only changed )
print(my_data.max(axis=1))
Output is here
0 80
1 70
2 70
3 70
4 70
5 30
level option
For MultiIndex (hierarchical) axis we can specify the level.
import pandas as pd
my_dict=pd.MultiIndex.from_arrays(
[[1,2,3,4,5,6],
[80,40,70,70,70,30],
[80,70,40,50,60,30]],
names=['id','math','eng'])
my_data = pd.Series([4, 2, 0, 8,3,4], name='marks', index=my_dict)
print(my_data.max(level='math'))
Output
math
80 4
40 2
70 8
30 4
Handling NA data using skipna option
We will use skipna=True to ignore the null or NA data. Let us check what happens if it is set to True ( skipna=True )
import numpy as np
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.max(skipna=True))
Output
NAME Ron
ID 6
MATH 80
ENGLISH 80
numeric_only
Default value is None, we can set it to True ( numeric_only=True ) to include only float, int, boolean columns. We can included all by setting it to False ( numeric_only=False ) . Let us see the outputs .
print(my_data.max(numeric_only=False))
Output is here
NAME Ron
ID 6
MATH 80
ENGLISH 80
« Pandas
Plotting graphs
min
sum
len
std
Filtering of Data
← Subscribe to our YouTube Channel here