« Pandas
We can minimum number in rows or columns by using min().
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.min())
Output
NAME Alex
ID 1
MATH 30
ENGLISH 30
What is the minimum mark in MATH ?
print(my_data['MATH'].max()) # 30
We can get the row or details of the record who got minimum mark in MATH
print(my_data[my_data['MATH'].min()==my_data['MATH']])
Output is here
NAME ID MATH ENGLISH
5 Jack 6 30 30
Using axis
We will use option axis=0 ( default ) by adding to above code.
( The last line is only changed )
print(my_data.min(axis=1))
Output is here
0 1
1 2
2 3
3 4
4 5
5 6
We are getting all the minimum values from the ID column. You can change the DataFrame and then check the minimum value.
level option
For MultiIndex (hierarchical) axis we can specify the level.
import pandas as pd
my_dict=pd.MultiIndex.from_arrays(
[[1,2,3,4,5,6],
[80,40,70,70,70,30],
[80,70,40,50,60,30]],
names=['id','math','eng'])
my_data = pd.Series([4, 2, 0, 8,3,4], name='marks', index=my_dict)
print(my_data.min(level='math'))
Output
math
80 4
40 2
70 0
30 4
Handling NA data using skipna option
We will use skipna=True to ignore the null or NA data. Let us check what happens if it is set to True ( skipna=True )
import numpy as np
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.min(skipna=True))
Output
NAME Alex
ID 1
MATH 30
ENGLISH 30
numeric_only
Default value is None, we can set it to True ( numeric_only=True ) to include only float, int, boolean columns. We can included all by setting it to False ( numeric_only=False ) . Let us see the outputs .
print(my_data.min(numeric_only=False))
Output is here
NAME Alex
ID 1
MATH 30
ENGLISH 30
« Pandas
Plotting graphs
mean
sum
max
len
std
← Subscribe to our YouTube Channel here