Pandas DataFrame min()

DataFrame.rolling(window, min_periods=None,center=False,on=None,
win_type=None,  axis=0, closed=None,step=None,method='single')
Rolling function
window: Size of the window
min_periods : Minimum number of observation required to have a value.
center Bool, default : False, set the window Label to right edge.
win_type : None, If a string, it must be a valid scipy.signal window function
on : a column label or Index level on which to calculate the rolling window.
axis : 0 ( defalut ) or 1 , Axis = 0 is across rows, axis = 1 is across columns.
closed : None (default), 'right', 'left','both','neither'. Points to exclude from calculation.
step : None ( default ), int , Evaluate the window at every step result
method : single ( default ) or table, how to execute rolling operation
import pandas as pd 
my_dict={
  'name':['Alex','King','Ravi','Raju','John'],
  'mark':[7,8,5,6,3]
  	}
df = pd.DataFrame(data=my_dict) # create DataFrame
#print(df.mark.rolling(2).sum()) # rolling window values 
df['my_sum']=df.mark.rolling(2).sum() # New column with rolling window values
print(df)
Output
   name  mark  my_sum
0  Alex     7     NaN
1  King     8    15.0
2  Ravi     5    13.0
3  Raju     6    11.0
4  John     3     9.0

min_periods

In above output you can see the first row value for rolling window ( column my_sum ) is NaN. This is because we need an window of two values ( current and previous one ) to get sum value. We can set the min_periods to 1 to specify window length of 1 if two rows are not available. This will change the value of first row only.
df['my_sum']=df.mark.rolling(2,min_periods=1).sum() 
Output
   name  mark  my_sum
0  Alex     7     7.0
1  King     8    15.0
2  Ravi     5    13.0
3  Raju     6    11.0
4  John     3     9.0

on

Here we are calculating mean using the column name
print(df.rolling(2,on='name').mean())
Output
   name  mark
0  Alex   NaN
1  King   7.5
2  Ravi   6.5
3  Raju   5.5
4  John   4.5
See the example below to understand uses of on option on different columns.

axis

axis =0 (default ) roll across the rows.
axis =1 roll across the columns.
import pandas as pd 
my_dict={
  'name':['Alex','King','Ravi','Raju','John'],
  'mark':[7,8,5,6,3],
  'math':[70,80,50,60,30]
  	}
df = pd.DataFrame(data=my_dict) # create DataFrame
print(df.rolling(2,axis=1).sum()) 
Output
   mark  math
0   NaN  77.0
1   NaN  88.0
2   NaN  55.0
3   NaN  66.0
4   NaN  33.0
If you have more than one non-numeric column then we have to specify the column for the rolling window to apply. We may get this error if we don't specify the column name.

pandas.errors.DataError: Cannot aggregate non-numeric type: object
import pandas as pd 
my_dict={
  'name':['Alex','King','Ravi','Raju','John'],
  'class1':['One','Two','Three','Four','Five'],
  'mark':[7,8,5,6,3],
  'math':[70,80,50,60,3]
  	}
df = pd.DataFrame(data=my_dict) # create DataFrame
df['my_sum']=df.rolling(2).math.sum() # rolling window on math column
print(df)
Output
   name class1  mark  math  my_sum
0  Alex    One     7    70     NaN
1  King    Two     8    80   150.0
2  Ravi  Three     5    50   130.0
3  Raju   Four     6    60   110.0
4  John   Five     3     3    63.0

Rolling window using Date

Rolling function using Date
Here more than one record is available in a single day. Here 2 days as considered as window, so multiple rows are used for calculated the values within 2 days rolling.

Here we are using to_datetime() to convert the column to datetime dtype.
import pandas as pd 
my_dict={
  'dt_sale':['2023-06-04', '2023-06-04',
  '2023-06-04', '2023-06-05','2023-06-05','2023-06-06',
  '2023-06-07','2023-06-08'],
  'qty':[1,5,4,2,6,3,4,2]
         }
df = pd.DataFrame(data=my_dict)
df['dt_sale'] = pd.to_datetime(df['dt_sale']) # Cast dtype to  datetime
df["2days"] = df.rolling(window = '2d', on = "dt_sale").qty.sum()
print(df)
Output
     dt_sale  qty  2days
0 2023-06-04    1    1.0
1 2023-06-04    5    6.0
2 2023-06-04    4   10.0
3 2023-06-05    2   12.0
4 2023-06-05    6   18.0
5 2023-06-06    3   11.0
6 2023-06-07    4    7.0
7 2023-06-08    2    6.0

Using on option on different Date columns

Here we have used two different date columns dt_sale and dt_buy. Two different columns are created by using the windows of these two columns for 2 days.
import pandas as pd 
my_dict={
  'dt_sale':['2023-06-04', '2023-06-04',
  '2023-06-04', '2023-06-05','2023-06-05','2023-06-06',
  '2023-06-08','2023-06-08'],

  'dt_buy' :['2023-06-03', '2023-06-04',
  '2023-06-04', '2023-06-05','2023-06-05','2023-06-06',
  '2023-06-07','2023-06-08'],

  'qty':[1,5,4,2,6,3,4,2]
         }
df = pd.DataFrame(data=my_dict)
df['dt_sale'] = pd.to_datetime(df['dt_sale']) # Cast dtype to  datetime  
df['dt_buy'] = pd.to_datetime(df['dt_buy']) # Cast dtype to  datetime
df["2d_sale"] = df.rolling(window = '2d', on = "dt_sale").qty.sum()
df["2d_buy"] = df.rolling(window = '2d', on = "dt_buy").qty.sum()
print(df)
Output is here
     dt_sale     dt_buy  qty  2d_sale  2d_buy
0 2023-06-04 2023-06-03    1      1.0     1.0
1 2023-06-04 2023-06-04    5      6.0     6.0
2 2023-06-04 2023-06-04    4     10.0    10.0
3 2023-06-05 2023-06-05    2     12.0    11.0
4 2023-06-05 2023-06-05    6     18.0    17.0
5 2023-06-06 2023-06-06    3     11.0    11.0
6 2023-06-08 2023-06-07    4      4.0     7.0
7 2023-06-08 2023-06-08    2      6.0     6.0
Pandas Data Analysis mean sum max len std
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer