Python Pandas Data Analysis
select_dtypes(self, include=None, exclude=None)
select_dtypes() : to get subset of DataFrame of particular dtypes.
Parameters
include or exclude the selection dtypes
Returns
DataFrame to include ( or exclude ) dtypes
Raise
ValueError , if Parameters is not given
Let us create a DataFrame having all data types . From this DataFrame we will collect all int dtypes.
import pandas as pd
td = pd.Series([pd.Timedelta(days=i) for i in range(6)])
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'Avg_mark':[45.5,48.09,50.12,55.1,50.6,55.6],
'dt_start':['1/1/2020','2/1/2020','5/1/2020','11/7/2020',
'15/8/2020','31/12/2020'],
'Exam':[True,False,True,True,False,False],
'dt':td,
'grade':['a', 'c', 'b', 'b','b','c']}
my_data = pd.DataFrame(data=my_dict)
my_data['grade']=my_data['grade'].astype('category')
my_data['dt_start'] = pd.to_datetime(my_data['dt_start'])
print(my_data.select_dtypes(include='int64'))
Output
ID MATH
0 1 80
1 2 40
2 3 70
3 4 70
4 5 70
5 6 30
Using more than one dtypes using a list.
print(my_data.select_dtypes(include=['int64','bool']))
Output
ID MATH Exam
0 1 80 True
1 2 40 False
2 3 70 True
3 4 70 True
4 5 70 False
5 6 30 False
Using exclude
We will remove two dtypes int64 and float64 , other dtypes will be returned.
print(my_data.select_dtypes(exclude=['int64','float64']))
Output
NAME dt_start Exam dt grade
0 Ravi 2020-01-01 True 0 days a
1 Raju 2020-02-01 False 1 days c
2 Alex 2020-05-01 True 2 days b
3 Ron 2020-11-07 True 3 days b
4 King 2020-08-15 False 4 days b
5 Jack 2020-12-31 False 5 days c
« Pandas
to_timedelta()
astype()
select_dtypes()
timedelta64()
← Subscribe to our YouTube Channel here