Pandas DataFrame sum()

Pandas

We can sum number of in rows or columns by using sum().

import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.sum())
Output
NAME       RaviRajuAlexRonKingJack
ID                              21
MATH                           360
ENGLISH                        330

Using axis

Axis of Two dimensional array We will use option axis=0 ( default ) by adding to above code.

( The last line is only changed )
print(my_data.sum(axis=1))
Output is here
0    161
1    112
2    113
3    124
4    135
5     66

level option

For MultiIndex (hierarchical) axis we can specify the level.
import pandas as pd 
my_dict=pd.MultiIndex.from_arrays(
         [[1,2,3,4,5,6],
         [80,40,70,70,70,30],
         [80,70,40,50,60,30]],
names=['id','math','eng'])
my_data = pd.Series([4, 2, 0, 8,3,4], name='marks', index=my_dict)
print(my_data.sum(level='math'))
Output
math
80     4
40     2
70    11
30     4

Handling NA data

We will use skipna=True to ignore the null or NA data. Let us check what happens if it is set to True ( skipna=True )
import numpy as np
import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'MATH':[80,40,70,70,70,30],
         'ENGLISH':[80,70,np.nan,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data.sum(skipna=False))
Output
NAME       RaviRajuAlexRonKingJack
ID                              21
MATH                           360
ENGLISH                        NaN
Check the sum of ENGLISH it is returned as NAN, the value will change to 290 if we set skipna=True

numeric_only

Default value is None, we can set it to True ( numeric_only=True ) to include only float, int, boolean columns. We can included all by setting it to False ( numeric_only=False ) . Let us see the outputs .
print(my_data.sum(numeric_only=False))
Output is here
NAME       RaviRajuAlexRonKingJack
ID                              21
MATH                           360
ENGLISH                      330.5
Now let us change the option numeric_only to True ( numeric_only=True ).
print(my_data.sum(numeric_only=True))
Output
ID          21.0
MATH       360.0
ENGLISH    330.5

min_count

Default value is 0, it accepts int. It is required number of valid values to perform.

Pandas Plotting graphs mean min max len std
Subscribe to our YouTube Channel here

Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com



    Post your comments , suggestion , error , requirements etc here





    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2022 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer