unique(): Using unique() and nunique() in Pandas DataFrames

We will get unique values and its frequency as series.

Parameters

values: 1-D array input.

Examples with Parameters

The name of classes ( unique )
import pandas as pd 
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
         'ID':[1,2,3,4,5,6],
         'GAME':['CRICKET','TENNIS','CRICKET','HOCKEY','CRICKET','TENNIS'],
         'CLASS1':['Four','Three','Three','Four','Five','Three']}
my_data = pd.DataFrame(data=my_dict)
print(my_data['CLASS1'].unique())
Output
['Four' 'Three' 'Five']
We will get unique games played by students.
print(my_data['GAME'].unique())
Output
['CRICKET' 'TENNIS' 'HOCKEY']
What are the number of unique data ( use nunique() ).
print(my_data['CLASS1'].nunique())
Output
3

Example: Finding Unique Values Across Multiple Columns

We can use `unique()` to get distinct values across different columns. This is helpful when analyzing multiple categories.

import pandas as pd
my_data = pd.DataFrame({
    'A': [1, 2, 2, 3, 4],
    'B': [4, 4, 3, 3, 2]
})
unique_values = pd.concat([my_data['A'], my_data['B']]).unique()
print(unique_values)  
[1 2 3 4]  

Use Case: Comparing Unique Values in Different DataFrames

When working with multiple datasets, you may want to compare unique values to identify overlaps or discrepancies.

import pandas as pd
  df1 = pd.DataFrame({'City': ['NY', 'LA', 'SF', 'NY']})
df2 = pd.DataFrame({'City': ['NY', 'DC', 'SF', 'Chicago']})

unique_cities_df1 = df1['City'].unique()
unique_cities_df2 = df2['City'].unique()

common_cities = set(unique_cities_df1).intersection(unique_cities_df2)
print(common_cities)
{'NY', 'SF'}

Advanced Feature: Using `unique()` with Categorical Data

Pandas can work more efficiently by converting columns to categorical types before using `unique()`, especially with repeated data.

my_data['Category'] = my_data['A'].astype('category')
unique_categories = my_data['Category'].unique()
print(unique_categories)

Example: Counting Unique Values Using `nunique()`

Alongside `unique()`, we can use `nunique()` to quickly count distinct entries in a column.

import pandas as pd
  data = pd.Series(['apple', 'orange', 'apple', 'banana', 'orange'])
unique_count = data.nunique()
print(unique_count)
3 

value_counts()

Pandas DataFrame cut() segment and sort data values into bins
Subhendu Mohapatra — author at plus2net
Subhendu Mohapatra

Author

🎥 Join me live on YouTube

Passionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.



Subscribe to our YouTube Channel here



plus2net.com







Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
Python Tkinter Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles Contact us
©2000-2025   plus2net.com   All rights reserved worldwide Privacy Policy Disclaimer