import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,60,30],
'CLASS1':['Four','Three','Three','Four','Five','Three']}
my_data = pd.DataFrame(data=my_dict)
print(my_data['CLASS1'].value_counts())
Output
Three 3
Four 2
Five 1
print(my_data['CLASS1'].value_counts(normalize=True))
Output
Three 0.500000
Fourth 0.333333
Five 0.166667
my_data = pd.DataFrame(data=my_dict)
print(my_data['CLASS1'].value_counts(sort=False))
Output
Five 1
Three 3
Four 2
print(my_data['CLASS1'].value_counts(ascending=True))
Output
Five 1
Four 2
Three 3
print(my_data['MATH'].value_counts(bins=3))
Output
(63.333, 80.0] 3
(29.948999999999998, 46.667] 2
(46.667, 63.333] 1
non-uniform width bins
print(my_data['MATH'].value_counts(bins=[1,50,70,90]))
Output
(50.0, 70.0] 3
(0.999, 50.0] 2
(70.0, 90.0] 1
import pandas as pd
import numpy as np
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,np.nan,30],
'CLASS1':['Four','Three','Three','Four','Five','Three']}
my_data = pd.DataFrame(data=my_dict)
print(my_data['MATH'].value_counts(dropna=False))
Output
70.0 2
30.0 1
NaN 1
40.0 1
80.0 1
We can set it to True ( dropna=True)
print(my_data['MATH'].value_counts(dropna=True))
Output
70.0 2
30.0 1
40.0 1
80.0 1
Unique dataAuthor
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.