import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
print(my_data['NAME'].str.len())
Output
0 4
1 4
2 4
3 3
4 4
5 4
Adding one column showing length of the string field ( NAME )
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data['LENGTH']=my_data['NAME'].str.len()
print(my_data )
Output
NAME ID MATH ENGLISH LENGTH
0 Ravi 1 80 80 4
1 Raju 2 40 70 4
2 Alex 3 70 40 4
3 Ron 4 70 50 3
4 King 5 70 60 4
5 Jack 6 30 30 4
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,70,30],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data['LENGTH']=my_data['ENGLISH'].astype(str).str.len()
print(my_data )
Output
NAME ID MATH ENGLISH LENGTH
0 Ravi 1 80 80 2
1 Raju 2 40 70 2
2 Alex 3 70 40 2
3 Ron 4 70 50 2
4 King 5 70 60 2
5 Jack 6 30 30 2
Let us use one float datatype and find out the length. Here also we will use astype() to convert float to string data. Here we changed MATH column by adding float data.
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80.34,40.21,70.456,70.123,70.0,30.9],
'ENGLISH':[80,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data['LENGTH']=my_data['MATH'].astype(str).str.len()
print(my_data)
Output
NAME ID MATH ENGLISH LENGTH
0 Ravi 1 80.340 80 5
1 Raju 2 40.210 70 5
2 Alex 3 70.456 40 6
3 Ron 4 70.123 50 6
4 King 5 70.000 60 4
5 Jack 6 30.900 30 4
Pandas contains() Converting char case slice()
split()
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.