Prepending string with '0'
Returns string with filled 0
If we have integer column then we have to first change the object to string dtype by using astype().
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex'],'ID':[1,2,3],
'MATH':[30,40,50],'ENGLISH':[20,30,40]}
df = pd.DataFrame(data=my_dict)
df['MATH']=df['MATH'].astype(str) # to string dtype
#print(df.MATH.str.zfill(3))
df['MATH']=df.MATH.str.zfill(3)
print(df)
Output
NAME ID MATH ENGLISH
0 Ravi 1 030 20
1 Raju 2 040 30
2 Alex 3 050 40
Handling special chars , negative numbers and big numbers
Here we have negative number, single negative number, string and more than 3 char numbers. Check the output
my_dict={'NAME':['Ravi','Raju','Alex','King','Queen'],'ID':[1,2,3,4,5],
'MATH':[-3,-40,5,'abc',6000],'ENGLISH':[20,30,40,50,10]}
df = pd.DataFrame(data=my_dict)
df['MATH']=df['MATH'].astype(str)
df['MATH']=df.MATH.str.zfill(3)
print(df)
Output
NAME ID MATH ENGLISH
0 Ravi 1 -03 20
1 Raju 2 -40 30
2 Alex 3 005 40
3 King 4 abc 50
4 Queen 5 6000 10
« Pandas
contains() Converting char case split()
← Subscribe to our YouTube Channel here