DataFrame.to_dict(orient='dict', into=<class 'dict'>)
orient
into
df=pd.DataFrame(data={'id': [1, 2, 3],
'name': ['John Deo', 'Max Ruin', 'Arnold'],
'class': ['Four', 'Three', 'Three'],
'mark': [75, 85, 55],
'gender': ['female', 'male', 'male']})
Using this DataFrame we can create the Dictionary by using to_dict().
my_dict=df.to_dict()
print(my_dict)
Output is here
{'id': {0: 1, 1: 2, 2: 3},
'name': {0: 'John Deo', 1: 'Max Ruin', 2: 'Arnold'},
'class': {0: 'Four', 1: 'Three', 2: 'Three'},
'mark': {0: 75, 1: 85, 2: 55},
'gender': {0: 'female', 1: 'male', 2: 'male'}}
my_dict=df.to_dict(orient='dict')
{'id': {0: 1, 1: 2, 2: 3},
'name': {0: 'John Deo', 1: 'Max Ruin', 2: 'Arnold'},
'class': {0: 'Four', 1: 'Three', 2: 'Three'},
'mark': {0: 75, 1: 85, 2: 55},
'gender': {0: 'female', 1: 'male', 2: 'male'}}
my_dict=df.to_dict( orient='list')
Output is here
{'id': [1, 2, 3],
'name': ['John Deo', 'Max Ruin', 'Arnold'],
'class': ['Four', 'Three', 'Three'],
'mark': [75, 85, 55],
'gender': ['female', 'male', 'male']}
my_dict=df.to_dict( orient='series')
Output is here
{'id': 0 1
1 2
2 3
Name: id, dtype: int64, 'name': 0 John Deo
1 Max Ruin
2 Arnold
Name: name, dtype: object, 'class': 0 Four
1 Three
2 Three
Name: class, dtype: object, 'mark': 0 75
1 85
2 55
Name: mark, dtype: int64, 'gender': 0 female
1 male
2 male
Name: gender, dtype: object}
my_dict=df.to_dict( orient='split')
Output is here
{'index': [0, 1, 2],
'columns': ['id', 'name', 'class', 'mark', 'gender'],
'data': [[1, 'John Deo', 'Four', 75, 'female'],
[2, 'Max Ruin', 'Three', 85, 'male'],
[3, 'Arnold', 'Three', 55, 'male']]}
my_dict=df.to_dict( orient='records')
Output is here
[{'id': 1,
'name': 'John Deo',
'class': 'Four',
'mark': 75,
'gender': 'female'},
{'id': 2, 'name': 'Max Ruin', 'class': 'Three', 'mark': 85, 'gender': 'male'},
{'id': 3, 'name': 'Arnold', 'class': 'Three', 'mark': 55, 'gender': 'male'}]
my_dict=df.to_dict( orient='index')
Output is here
{0: {'id': 1,
'name': 'John Deo',
'class': 'Four',
'mark': 75,
'gender': 'female'},
1: {'id': 2,
'name': 'Max Ruin',
'class': 'Three',
'mark': 85,
'gender': 'male'},
2: {'id': 3,
'name': 'Arnold',
'class': 'Three',
'mark': 55,
'gender': 'male'}}
import pandas as pd
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://userid:pw@localhost/my_db")
sql="SELECT * FROM student LIMIT 0, 3"
df=pd.read_sql(sql,my_conn)
my_dict=df.to_dict()
my_dict
Output is here
{'id': {0: 1, 1: 2, 2: 3},
'name': {0: 'John Deo', 1: 'Max Ruin', 2: 'Arnold'},
'class': {0: 'Four', 1: 'Three', 2: 'Three'},
'mark': {0: 75, 1: 85, 2: 55},
'gender': {0: 'female', 1: 'male', 2: 'male'}}
df=pd.read_excel("D:\\my_data\\student.xlsx") # Path of the file.
df.to_dict()
We can read one csv file by using read_csv()
df=pd.read_csv("D:\\my_data\\student.csv") # change the path
df.to_dict()
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.