import pandas as pd
import numpy as np
my_data = pd.read_excel('D:\\rent-calculation.xlsx')
print(my_data.columns)
print(my_data['dept'].value_counts())
print(my_data[my_data['id'].isnull()])
my_data['ck_date'] = pd.to_datetime(my_data['ck_date'])
bd=pd.to_datetime('2020-06-01') # base date
my_data['diff_days']=bd-my_data['ck_date']
print(my_data)
my_data['diff_days'] = my_data['diff_days']/ np.timedelta64(1, 'D')
print(my_data[my_data['diff_days'] > 200])
#my_data['allowed']=my_data['dept'].apply(lambda x:50 if x=="mktg" else np.nan)
#my_data['allowed']=my_data['dept'].apply(lambda x:65 if x=="production" else np.nan)
#my_data['allowed']=my_data['dept'].apply(lambda x:45 if x=="planning" else np.nan)
my_data['allowed']=np.where(my_data['dept']=='mktg',50,
np.where(my_data['dept']=='production',65,
np.where(my_data['dept']=='planning',45,np.nan)))
print(my_data)
print(my_data[my_data['diff_days'] > my_data['allowed']])
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.