get_as_df() :Google sheets to Pandas DataFrame

get_as_df() pygsheets to DataFrame
Collect the data from google sheets and create Pandas DataFrame.
get_as_df(has_header=True, index_column=None, 
 start=None, end=None, numerize=True, empty_value='', 
 value_render=FORMATTED_VALUE | UNFORMATTED_VALUE | FROMULA, **kwargs)
get_as_df() to create Pandas DataFrame using data from Google sheet with options for index, header
OptionsDetails
has_headerDefault is True , Interpret first row as DataFrame header
index_columnColumn to use as df index ( integer )
numerizeNumerize cell values
empty_valuePlaceholder value when cell is empty
startDefault A1, top left cell address ( as tuple ) to use as DataFrame
endDefault ( rows , cols) , Bottom right cell address ( as tuple ) to use as DataFrame
value_renderDefault ( string) FORMATTED_VALUE | UNFORMATTED_VALUE | FORMULA
include_tailing_emptyAfter last non-zero value in a row , whether to include trailing cells/value
include_tailing_empty_rowswhether to include tailing rows with no values

Pygsheets and google API authorization Pandas DataFrame

google sheet to create DataFrame using get_as_df()
Here is the code to create DataFrame using google sheet.
import pygsheets
path='G:\\My drive\\testing\\google-sheet\\creds1.json'
gc=pygsheets.authorize(service_account_file=path)#Authorize to connect
sh=gc.open('my_gsheets1') # Open google sheet 
wk1=sh[0] # first worksheet
wk1.resize(10,10) # resize rows and columns of sheet
df = wk1.get_as_df() # create the dataframe 
print(df)  # Display DataFrame
print(df.count()) # Row and column details of the DataFrame. 
Output is here
   NAME  ID  MATH  ENGLISH
0  Ravi   1    30       20
1  Raju   2    40       30
2  Alex   3    50       40
NAME       3
ID         3
MATH       3
ENGLISH    3
dtype: int64

has_header

Default value for this Option is True. The first row is used as column header for the created DataFrame.
df = wk1.get_as_df(has_header=False) # create the dataframe 
print(df)  # Display 
      0   1     2        3
0  NAME  ID  MATH  ENGLISH
1  Ravi   1    30       20
2  Raju   2    40       30
3  Alex   3    50       40

index_column

We can specify which column is to be used as index.
df = wk1.get_as_df(index_column=2)
    NAME  MATH  ENGLISH
ID
1   Ravi    30       20
2   Raju    40       30
3   Alex    50       40
Let us change the index column
df = wk1.get_as_df(index_column=1) # create the dataframe 
Output
      ID  MATH  ENGLISH
NAME
Ravi   1    30       20
Raju   2    40       30
Alex   3    50       40

numerize

By default the value of numerize=True. It will numerize the cell value. We changed C3 cell value.
numerize option in get_as_df()
df = wk1.get_as_df(numerize=False)
Output
   NAME ID MATH ENGLISH
0  Ravi  1   30      20
1  Raju  2  040      30
2  Alex  3   70  $40.00
df = wk1.get_as_df(numerize=True)
Output
   NAME  ID  MATH ENGLISH
0  Ravi   1    30      20
1  Raju   2    40      30
2  Alex   3    70  $40.00

value_render

This will add the format or remove the format or only use the formual.
We have formatted the cell D4 to add Price ( $50 ) , watch the formula we used at D4 cell below.
value_render option of get_as_df()
df = wk1.get_as_df(value_render='FORMATTED_VALUE') #the dataframe 
Output
   NAME  ID  MATH ENGLISH
0  Ravi   1    30      20
1  Raju   2    40      30
2  Alex   3    50  $50.00
df = wk1.get_as_df(value_render='UNFORMATTED_VALUE') 
Output
   NAME  ID  MATH  ENGLISH
0  Ravi   1    30       20
1  Raju   2    40       30
2  Alex   3    50       50
df = wk1.get_as_df(value_render='FORMULA')
Output
   NAME  ID  MATH ENGLISH
0  Ravi   1    30      20
1  Raju   2    40      30
2  Alex   3    50  =D3+20

include_tailing_empty_rows

We will add count() to read number of rows and columns in our DataFrame.
sh=gc.open('my_gsheets3')
wk1=sh[0] # first worksheet
wk1.resize(10,10) # resize rows and columns of sheet
df = wk1.get_as_df(include_tailing_empty_rows=True) #the dataframe 
print(df)  # Display 
print(df.count())
We have resized our sheet to 10 rows and 10 columns by using wk1.resize(10,10) so all the blank cells are added and it is showing 9 rows of data ( excluding header row )
   NAME ID MATH ENGLISH
0  Ravi  1   30      20
1  Raju  2   40      30
2  Alex  3   50  $50.00
3
4
5
6
7
8
NAME       9
ID         9
MATH       9
ENGLISH    9
dtype: int64
We can change this to exclude empty rows
df = wk1.get_as_df(include_tailing_empty_rows=False) #the dataframe 
Output
   NAME  ID  MATH ENGLISH
0  Ravi   1    30      20
1  Raju   2    40      30
2  Alex   3    50  $50.00
NAME       3
ID         3
MATH       3
ENGLISH    3
dtype: int64

empty_value

Placeholder value to represent empty cells when numerizing. ( Note: by default numerize=True). We changed the value at google sheet like this by keeping some blanks.
empty_value option in get_as_df()
df = wk1.get_as_df( empty_value='#')
   NAME ID MATH ENGLISH
0  Ravi  1    #      20
1  Raju  2   40      30
2  Alex  #   70       #
numerize=False
df = wk1.get_as_df(numerize=False,empty_value='#')
output
   NAME ID MATH ENGLISH
0  Ravi  1           20
1  Raju  2  040      30
2  Alex      70       #
Pygsheets and google API authorization set_dataframe()
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer