from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://userid:password@localhost/database_name")
We will use read_sql() to create the DataFrame by using the query.
import pandas as pd
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://id:pw@localhost/my_tutorial")
query="SELECT * FROM student WHERE class='four'"
df = pd.read_sql(query,my_conn,index_col='id')
print(df)
Using the Pandas DataFrame df, we will use set_dataframe() to add the dataframe to google sheets.
import pandas as pd
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://id:pw@localhost/my_tutorial")
query="SELECT * FROM student WHERE class='four'"
df = pd.read_sql(query,my_conn,index_col='id')
print(df)
import pygsheets
path='G:\\My drive\\testing\\google-sheet\\creds1.json'
gc=pygsheets.authorize(service_account_file=path)
sh=gc.open('my_gsheets1')
wk1=sh[0]
wk1.clear() # remove previous data if any
wk1.set_dataframe(df,(1,1),copy_index=True, extend=True)
import pygsheets
path='G:\\My drive\\testing\\google-sheet\\creds1.json'
gc=pygsheets.authorize(service_account_file=path)
sh=gc.open('my_gsheets1')
wk1=sh[0]
df = wk1.get_as_df(index_column=1)
print(df)
# inserting dataframe to MySQL table: Part 2
import pandas as pd
from sqlalchemy import create_engine
my_conn = create_engine("mysql+mysqldb://root:test@localhost/my_tutorial")
df.to_sql(con=my_conn,name='student2',if_exists='append', index=False)
Pygsheets and google API authorization set_dataframe() Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.