T | Transpose , Changing Columns and indexes |
at | value at input row , column |
columns | Name of the Columns as List |
dtypes | Data types of columns |
empty | Checking if DataFrame is empty |
iat | Data at position ( integer based )given as row and column |
iloc | Data at (label based ) |
index | Details on row based |
is_copy | Return the copy ( deprecated) |
ix | Data based on row and column ( deprecated) |
loc | Data based on (label based ) Position |
ndim | Dimension ( axis ) of the DataFrame |
shape | Number of rows and column as tuple |
size | Number of elements in DataFrame |
style | Associated HTML style |
values | Numpy representation of the DataFrame |
import pandas as pd
print(dir(pd))
Use this code for examples of all sample attributes shown below.
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],'MATH':[30,40,50,60,70,80],'ENGLISH':[20,30,40,50,60,70]}
my_data = pd.DataFrame(data=my_dict)
print(my_data)
NAME ID MATH ENGLISH
0 Ravi 1 30 20
1 Raju 2 40 30
2 Alex 3 50 40
3 Ron 4 60 50
4 King 5 70 60
5 Jack 6 80 70
Above code will be used to check different attributes
T
:Transpose , Changing Columns and indexes
print(my_data.T)
0 1 2 3 4 5
NAME Ravi Raju Alex Ron King Jack
ID 1 2 3 4 5 6
MATH 30 40 50 60 70 80
ENGLISH 20 30 40 50 60 70
at
: value at by row, column pair
print(my_data.at[3,'ENGLISH']) # 50
columns
: Name of the Columns
print(my_data.columns)
Output
Index(['NAME', 'ID', 'MATH', 'ENGLISH'], dtype='object')
dtypes
: dtypes of used DataFrame
print(my_data.dtypes)
Output
NAME object
ID int64
MATH int64
ENGLISH int64
dtype: object
More on Data Types: dtypes()
empty
: The DataFrame empty or not ( True or False )
print(my_data.empty) # False
iat
: Value at position at rows and columns as integers ( inputs ).
print(my_data.iat[2,3]) # 40
iloc
Values at different Positions , More on iloc
index
: Details on row labels
print(my_data.index) # RangeIndex(start=0, stop=6, step=1)
is_copy
: deprecated
ix
: deprecated , position based on row and column
print(my_data.ix[2,'MATH']) # 50
loc
: Values , More on loc
ndim
: array dimensions or axes
print(my_data.ndim) #2
shape
: Tuple giving dimension of DataFrame as ( rows, columns )
print(my_data.shape) # (6,4)
size
: Number of elements in the DataFrame
print(my_data.size) #24
style
: Associated html style
print(my_data.style)
values
: All values of the DataFrame without axes labels. Numpy representation of the DataFrame.
print(my_data.values)
Output is here
[['Ravi' 1 30 20]
['Raju' 2 40 30]
['Alex' 3 50 40]
['Ron' 4 60 50]
['King' 5 70 60]
['Jack' 6 80 70]]
Pandas DataFrame Pandas Methods
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.