Pandas DataFrame isnull


Update None, NaN or NA values and map them as True

Return the masked bool values of each element.


import pandas as pd
import numpy as np 
df = pd.DataFrame(data=my_dict)
Output : All None and NaN values are masked to True and others are given as False
0  False  False  False    False
1  False  False  False    False
2  False   True  False    False
3   True  False  False    False
4  False  False  False     True
5   True  False  False    False
In real life situation we get data in Excel or CSV file or from any database. We will try to get data from an Excel file and using the same data we will create our DataFrame.

Read more on how to create DataFrame by reading Excel file.

Download student-isnull.xlsx file
import pandas as pd 
import numpy as np
# Check your path for excel file
my_data = pd.read_excel('D:\student-isnull.xlsx') 
      id         name class1  mark     sex
0    1.0     John Deo   Four  75.0  female
1    2.0     Max Ruin  Three  85.0    male
2    NaN       Arnold  Three  55.0    male
3    4.0   Krish Star   Four  60.0  female
4    NaN    John Mike   Four  60.0  female
5    6.0    Alex John   Four  55.0     NaN
6    7.0  My John Rob   Five  78.0    male
7    NaN          NaN    NaN   NaN     NaN
8    9.0      Tes Qry    Six  78.0    male
9   10.0          NaN   Four  55.0  female
10  11.0       Ronald    Six   NaN  female
11  12.0        Recky    Six  94.0  female

Checking if NaN is there or not

We can check if there is any NaN value is there or not in our DataSet.
Output ( returns True if any value in DataFrame is NaN or None )
We can check any column for presence of any NaN or None value, we are checking name column only here
Two columns name and mark we will check for NaN or None value.

Showing rows having NaN value

Display where id column is having NaN value
   id       name class1  mark     sex
2 NaN     Arnold  Three  55.0    male
4 NaN  John Mike   Four  60.0  female
7 NaN        NaN    NaN   NaN     NaN
Display where name column is having NaN value
     id name class1  mark     sex
7   NaN  NaN    NaN   NaN     NaN
9  10.0  NaN   Four  55.0  female
Similarly other column names can be used.

Counting Number of NaN elements

We will count total number of NaN data present and find out the number of NaN or missing values in each columns.

Read more on sum() here.

Total number of NaN present inside different columns ( of our sample excel file )
print(my_data['id'].isnull().sum())     # output 3
print(my_data['name'].isnull().sum())   # output 2
print(my_data['class1'].isnull().sum()) # output 1 
print(my_data['mark'].isnull().sum())   # output 2 
print(my_data['sex'].isnull().sum())    # output 2
We will count the number of NaN for total DataFrame. First we will display the breakup of total number against each columns.
print(my_data.isnull().sum()) # output each column wise
id        3
name      2
class1    1
mark      2
sex       2
For the total number of NaN of the DataFrame.
print(my_data.isnull().sum().sum())    # Output 10

Filling NaN values by fillna()

isnull() can identify or count the missing values in a DataFrame. We can replace these values by using fillna()
fillna() notnull()

loc at mask

Pandas Pandas DataFrame iloc - rows and columns by integers

Post your comments , suggestion , error , requirements etc here

Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
©2000-2021 All rights reserved worldwide Privacy Policy Disclaimer