import pandas as pd
import numpy as np 
my_dict={'NAME':['Ravi','Raju','Alex',None,'King',None],
         'ID':[1,2,np.NaN,4,5,6],
         'MATH':[80,40,70,70,82,30],
         'ENGLISH':[81,70,40,50,np.NaN,30]}
df = pd.DataFrame(data=my_dict)
print(df.notnull())    NAME     ID   MATH  ENGLISH
0  False  False  False    False
1  False  False  False    False
2  False   True  False    False
3   True  False  False    False
4  False  False  False     True
5   True  False  False    Falseimport pandas as pd 
import numpy as np
# Check your path for excel file
df = pd.read_excel('D:\student-isnull.xlsx') 
print(df)      id         name class1  mark     gender
0    1.0     John Deo   Four  75.0  female
1    2.0     Max Ruin  Three  85.0    male
2    NaN       Arnold  Three  55.0    male
3    4.0   Krish Star   Four  60.0  female
4    NaN    John Mike   Four  60.0  female
5    6.0    Alex John   Four  55.0     NaN
6    7.0  My John Rob   Five  78.0    male
7    NaN          NaN    NaN   NaN     NaN
8    9.0      Tes Qry    Six  78.0    male
9   10.0          NaN   Four  55.0  female
10  11.0       Ronald    Six   NaN  female
11  12.0        Recky    Six  94.0  femaleprint(df.notnull().values.any())  Trueprint(df['name'].notnull().values.any()) # Output Trueprint(df[['name','mark']].notnull().values.any()) # Output Trueprint(df[~df.notnull().any(axis=1)] ) # all columns with Null valueprint(df.loc[df.notnull().any(axis=1) ]) print(df[df['id'].notnull()])      id         name class1  mark     gender
0    1.0     John Deo   Four  75.0  female
1    2.0     Max Ruin  Three  85.0    male
3    4.0   Krish Star   Four  60.0  female
5    6.0    Alex John   Four  55.0     NaN
6    7.0  My John Rob   Five  78.0    male
8    9.0      Tes Qry    Six  78.0    male
9   10.0          NaN   Four  55.0  female
10  11.0       Ronald    Six   NaN  female
11  12.0        Recky    Six  94.0  femaleprint(df[df['name'].notnull()])      id         name class1  mark     gender
0    1.0     John Deo   Four  75.0  female
1    2.0     Max Ruin  Three  85.0    male
2    NaN       Arnold  Three  55.0    male
3    4.0   Krish Star   Four  60.0  female
4    NaN    John Mike   Four  60.0  female
5    6.0    Alex John   Four  55.0     NaN
6    7.0  My John Rob   Five  78.0    male
8    9.0      Tes Qry    Six  78.0    male
10  11.0       Ronald    Six   NaN  female
11  12.0        Recky    Six  94.0  femaleprint(df[df['id'].notnull() & df['name'].notnull()])print(df['id'].notnull().sum())     # output 9
print(df['name'].notnull().sum())   # output 10
print(df['class1'].notnull().sum()) # output 11 
print(df['mark'].notnull().sum())   # output 10
print(df['gender'].notnull().sum())    # output 10print(df.notnull().sum()) # output each column wiseid         9
name      10
class1    11
mark      10
gender       10print(df.notnull().sum().sum())    # Output 50 
      Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.
