pivot()

Pivot are summarized data without any aggregate functions used.
pivot(index=None, columns=None, values=None)
index: str or object or a list of str, optional
columns: list or Column to use to make new frame’s columns.
values Column(s) to use for populating new frame’s values (optional ).
This is our sample DataFrame ( created by using sales.csv file after removing duplicate column/ rows )
import pandas as pd 
my_dict={'sale_id':[1,2,4,6,7],
         'c_id':[2,2,4,3,2],
         'p_id':[3,4,2,3,2],
	 'product':['Monitor','CPU','RAM','Monitor','RAM'],
         'qty':[2,1,2,2,3],
         'store':['ABC','DEF','DEF','DEF','ABC']}
sales = pd.DataFrame(data=my_dict)
print(sales)
sale_idc_idp_idproductqtystore
0123Monitor2ABC
1224CPU1DEF
2442RAM2DEF
3633Monitor2DEF
4722RAM3ABC
Using this DataFrame we will use the method pivot()
pvt=pd.pivot(sales,index=['product'],columns=['store'])
sale_idc_idp_idqty
storeABCDEFABCDEFABCDEFABCDEF
product
CPUNaN2.0NaN2.0NaN4.0NaN1.0
Monitor1.06.02.03.03.03.02.02.0
RAM7.04.02.04.02.02.03.02.0

values

pvt=sales.pivot(index=['product'],columns=['store'],values='qty')
storeABCDEF
product
CPUNaN1.0
Monitor2.02.0
RAM3.02.0

Difference between pivot_table and pivot

pivot_table() : Index column pair need not be unique and it can be used with aggragrate function list sum , average etc
pivot() :If the index column pair has multiple values then it will generate value error. We can't use aggragrate functions.
Pandas pivot_table() Pandas DataFrame
contains() to display and delete row based on Conditions
Subhendu Mohapatra — author at plus2net
Subhendu Mohapatra

Author

🎥 Join me live on YouTube

Passionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.



Subscribe to our YouTube Channel here



plus2net.com







Python Video Tutorials
Python SQLite Video Tutorials
Python MySQL Video Tutorials
Python Tkinter Video Tutorials
We use cookies to improve your browsing experience. . Learn more
HTML MySQL PHP JavaScript ASP Photoshop Articles Contact us
©2000-2025   plus2net.com   All rights reserved worldwide Privacy Policy Disclaimer