import pandas as pd
df=pd.read_csv('C:\\data\\student.csv') # use your system path
print(df.head())
Output is here
id name class mark gender
0 1 John Deo Four 75 female
1 2 Max Ruin Three 85 male
2 3 Arnold Three 55 male
3 4 Krish Star Four 60 female
4 5 John Mike Four 60 female
Options :
df=pd.read_csv('C:\\data\\student.csv',index_col='id')
df=pd.read_csv('C:\\data\\student.csv',header=None)
Output is here
0 1 2 3 4
0 id name class mark gender
1 1 John Deo Four 75 female
2 2 Max Ruin Three 85 male
3 3 Arnold Three 55 male
4 4 Krish Star Four 60 female
In the above code the header row ( first row or 0th row ) is treated as data ( not as column headers ) .
df=pd.read_csv('C:\\data\\student.csv',header=None,skiprows=1)
Output
0 1 2 3 4
0 1 John Deo Four 75 female
1 2 Max Ruin Three 85 male
2 3 Arnold Three 55 male
3 4 Krish Star Four 60 female
4 5 John Mike Four 60 female
In above code display only 3rd and 4th columns (first column is 0th column )
df=pd.read_csv('C:\\data\\student.csv',header=None,skiprows=1,usecols=[3,4])
Output
3 4
0 75 female
1 85 male
2 55 male
3 60 female
4 60 female
my_names=['my_id','my_name','my_class','my_mark','my_gender']
df=pd.read_csv('student.csv',names=my_names)
Output
my_id my_name my_class my_mark my_gender
0 id name class mark gender
1 1 John Deo Four 75 female
2 2 Max Ruin Three 85 male
3 3 Arnold Three 55 male
4 4 Krish Star Four 60 female
To remove the original headers, use header=0
df=pd.read_csv('student.csv',names=my_names,header=0)
blank_values = ["n/a", "na", "--"]
my_data=pd.read_csv("D:\\test-na_values.csv",na_values=blank_values)
my_data['status']=my_data['name'].isnull() # new column added
print(my_data)
Download test-na_values.csv file
df=pd.read_csv(path,skiprows=6)
Output
6 Alex John Four 55 male
0 7 My John Rob Fifth 78 male
1 8 Asruid Five 85 male
2 9 Tes Qry Six 78 male
3 10 Big John Four 55 female
4 11 Ronald Six 89 female
import pandas as pd
def to_float(x):
return float(x.strip('%'))/100
#return int(float(x.strip('%'))) # as integer
df=pd.read_csv('C:\\data\\student.csv',converters={'mark':to_float})
print(df.head())
Output is here
id name class mark gender
0 1 John Deo Four 0.75 female
1 2 Max Ruin Three 0.85 male
2 3 Arnold Three 0.55 male
3 4 Krish Star Four 0.60 female
4 5 John Mike Four 0.60 female
import pandas as pd
df=pd.read_csv('C:\\data\\student.csv',chunksize=3)
for chunk in df:
print(chunk)
Output
id name class mark gender
0 1 John Deo Four 75 female
1 2 Max Ruin Three 85 male
2 3 Arnold Three 55 male
id name class mark gender
3 4 Krish Star Four 60 female
4 5 John Mike Four 60 female
5 6 Alex John Four 55 male
From large CSV file to SQLite data transfer with Progress bar by using chnksize
pd.read_csv(filepath_or_buffer,
sep=’, ‘, delimiter=None, header=’infer’,
names=None, index_col=None, usecols=None,
squeeze=False, prefix=None, mangle_dupe_cols=True,
dtype=None, engine=None, converters=None,
true_values=None, false_values=None,
skipinitialspace=False, skiprows=None,
nrows=None, na_values=None, keep_default_na=True,
na_filter=True, verbose=False,
skip_blank_lines=True, parse_dates=False,
infer_datetime_format=False, keep_date_col=False,
date_parser=None, dayfirst=False, iterator=False,
chunksize=None, compression=’infer’, thousands=None,
decimal=b’.’, lineterminator=None, quotechar='”‘,
quoting=0, escapechar=None, comment=None, encoding=None,
dialect=None, tupleize_cols=None, error_bad_lines=True,
warn_bad_lines=True, skipfooter=0, doublequote=True,
delim_whitespace=False, low_memory=True,
memory_map=False, float_precision=None)
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine("mysql+mysqldb://userid:password@localhost/db_name")
sql="SELECT * FROM student "
my_data = pd.read_sql(sql,engine )
my_data.to_csv('D:\my_file.csv',index=False)
### End of storing data to CSV file ###
### Reading data from CSV file and creating table in MySQL ####
student3=pd.read_csv("D:\my_file.csv")
my_data = pd.DataFrame(data=student3)
print(my_data)
### Creating new table student3 or appending existing table
my_data.to_sql(con=engine,name='student3',if_exists='append')
read_csv()
function in Pandas?read_csv()
function in Pandas?read_csv()
function?read_csv()
function handle missing or null values in a CSV file?read_csv()
?header
parameter in read_csv()
? How can you handle cases where the CSV file has no header?read_csv()
?read_csv()
function handle different data types in a CSV file?usecols
parameter in read_csv()
?read_csv()
?read_csv()
handles date and time data?read_csv()
? If yes, how?index_col
parameter in read_csv()
?read_csv()
?Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.