import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex']}
df = pd.DataFrame(data=my_dict)
print(df.NAME.str.count(pat='a'))
Output
0 1
1 1
2 0
Here we have searched for a and returned number of occurences.
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex']}
df = pd.DataFrame(data=my_dict)
df['number']=df.NAME.str.count(pat='a')
print(df)
Output
NAME number
0 Ravi 1
1 Raju 1
2 Alex 0
import pandas as pd
import re
my_dict={'NAME':['Ravi','Raju','Alex']}
df = pd.DataFrame(data=my_dict)
df['number']=df.NAME.str.count('r', re.I)
print(df)
Output
NAME number
0 Ravi 1
1 Raju 1
2 Alex 0
In above code we have included re module and this is a case insensitive pattern matching.
import pandas as pd
my_dict={'NAME':['Ravi$a','Raj$u$b','Alex']}
df = pd.DataFrame(data=my_dict)
df['number']=df.NAME.str.count(pat='\$')
print(df)
Output
NAME number
0 Ravi$a 1
1 Raj$u$b 2
2 Alex 0
import pandas as pd
df = pd.DataFrame(['John','Mac','Arnold','Krish','Roni'],
columns=['Names'])
df.Names.str.count('r')
Output is here
0 0
1 0
2 1
3 1
4 0
We will use sum() to get total matching substrings.
df.Names.str.count('r').sum()
Output is
2
Pandas contains() Converting char case slice()
split()
Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.