fillna() : Fill NA/NaN values using the specified method

fillna(): Back fill or Front fill NaN or missing data in Pandas DataFrame C#06


We will fill all the NaN and None values with D. Here is the code.
import pandas as pd
import numpy as np 
my_dict={'NAME':['Ravi','Raju','Alex',None,'King',None],
         'ID':[1,2,np.NaN,4,5,6],
         'MATH':[np.NaN,80,70,70,82,30],
         'ENGLISH':[81,70,40,50,np.NaN,30]}
df = pd.DataFrame(data=my_dict)
print(df) # output without replacing 
df=df.fillna('D') # output after replacing
print(df)
Output is here , both outputs are given for better comparison.
print(df)df=df.fillna('D')
print(df)
 NAME   ID  MATH  ENGLISH
0  Ravi  1.0   NaN     81.0
1  Raju  2.0  80.0     70.0
2  Alex  NaN  70.0     40.0
3  None  4.0  70.0     50.0
4  King  5.0  82.0      NaN
5  None  6.0  30.0     30.0
NAME   ID  MATH ENGLISH
0  Ravi  1.0     D    81.0
1  Raju  2.0  80.0    70.0
2  Alex    D  70.0    40.0
3     D  4.0  70.0    50.0
4  King  5.0  82.0       D
5     D  6.0  30.0    30.0
Syntax
fillna(self, value=None, method=None, axis=None, 
	inplace=False, limit=None, downcast=None)
Return the Modified DataFrame ( if inplace=True ).
valueValue to be replaced. Can be 0. We can use method to replace NaN data also
methodHow to use the fill, values are backfill, ffill, pad
axis 0 or 1 or Column, the axis to be used for replacement
inplaceBoolean , along with method if value is True then original ( source ) dataframe is replaced after applying fillna()
limit Number , along with method this is the maximum number of replacements allowed.
downcast what to downcast if possible

Parameters

We will use options with different valeus to tell how to fill the NaN data.
method='backfill' , method='ffill', method='pad'
Each column we will apply different methods to replace the data. Check this code and output below it.
import pandas as pd
import numpy as np 
my_dict={'NAME':['Ravi','Raju','Alex',None,'King',None],
         'ID':[1,2,np.NaN,4,5,6],
         'MATH':[np.NaN,80,70,70,82,30],
         'ENGLISH':[81,70,40,50,np.NaN,30]}
df = pd.DataFrame(data=my_dict)
print(df)
df['ENGLISH']=df['ENGLISH'].fillna(method='backfill')
df['NAME']=df['NAME'].fillna(method='bfill')
df['MATH']=df['MATH'].fillna(method='pad')
df['ID']=df['ID'].fillna(method='ffill')
print(df)
Pandas fillna methods
For ENGLISH column we have used method='backfill', so the value at row 5 ( value = 30 ) is used at row 4 to replace NaN value.
For NAME column we have used method='bfill' value at 4th row is used to fill value at 3rd row.
For ID column we have used method='ffill' , here value at 1st row is used to fill value at 2nd row.

Note that the last value of NAME column and first value of MATH column is not replaced. ( Why ? )

For MATH column we have used method='pad' , it is same as ffill and as there is no value before it and for NAME column this the last row and there is no data after 5th row ( we used bfill ) , these two data are not changed.

axis

Using axis=1 we can fill the data in row. We will use method='backfill'
my_dict={'NAME':['Ravi','Raju','Alex',None,'King',None],
         'ID':[1,2,np.NaN,4,5,6],
         'MATH':[np.NaN,80,70,70,82,30],
         'ENGLISH':[81,70,40,50,np.NaN,30]}
df = pd.DataFrame(data=my_dict)
df=df.fillna(method='backfill',axis=1)
print(df)
Output Pandas fillna methods
   NAME  ID MATH ENGLISH
0  Ravi   1   81      81
1  Raju   2   80      70
2  Alex  70   70      40
3     4   4   70      50
4  King   5   82     NaN
5     6   6   30      30

limit

Along with method, limit is the maximum number of NaN values are to be replaced. Let us check the code below. As we used axis=0 so in each column only 1 ( limit=1 ) value is replaced.
import pandas as pd
import numpy as np 
my_dict={'NAME':['Ravi','Raju',None,None,'King',None],
         'ID':[1,np.NaN,np.NaN,4,5,6],
         'MATH':[np.NaN,80,70,70,82,30],
         'ENGLISH':[81,70,40,np.NaN,np.NaN,30]}
df = pd.DataFrame(data=my_dict)
df=df.fillna(method='bfill',axis=0,limit=1)
print(df)
Output is here ( note that only one data is replaced in each column ) , the data which are not replaced are highlighted.
   NAME   ID  MATH  ENGLISH
0  Ravi  1.0  80.0     81.0
1  Raju  NaN  80.0     70.0
2  None  4.0  70.0     40.0
3  King  4.0  70.0      NaN
4  King  5.0  82.0     30.0
5  None  6.0  30.0     30.0

inplace

By default the value is False. By using inplace=True , the original DataFrame ( source ) is changed. If inplace=False then the original DataFrame is retained.
df = pd.DataFrame(data=my_dict)
df.fillna('D',inplace=True)
print(df)
Output
   NAME ID  MATH ENGLISH
0  Ravi  1    80      81
1  Raju  2    40      70
2  Alex  D    70      40
3     D  4    70      50
4  King  5    82       D
5     D  6    30      30

Counting and identifying NaN values

We can count and display records with NaN by using isnull()
isnull()

Removing rows or columns by using dropna()

Rows or columns can be removed by using dropna()
dropna()

loc at mask

Pandas Pandas DataFrame iloc - rows and columns by integers
Subscribe to our YouTube Channel here


Subscribe

* indicates required
Subscribe to plus2net

    plus2net.com







    Python Video Tutorials
    Python SQLite Video Tutorials
    Python MySQL Video Tutorials
    Python Tkinter Video Tutorials
    We use cookies to improve your browsing experience. . Learn more
    HTML MySQL PHP JavaScript ASP Photoshop Articles FORUM . Contact us
    ©2000-2024 plus2net.com All rights reserved worldwide Privacy Policy Disclaimer