import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,70,70,82,30],
'ENGLISH':[81,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_data=my_data.mask(my_data['MATH'] > 80,-5)
print(my_data)
Output
NAME ID MATH ENGLISH
0 Ravi 1 80 81
1 Raju 2 40 70
2 Alex 3 70 40
3 Ron 4 70 50
4 -5 -5 -5 -5
5 Jack 6 30 30
You can check that the all data of 4th row is replaced by -5.my_data['MATH']=my_data['MATH'].mask(my_data['MATH'] > 80,-5)
print(my_data)
Output
NAME ID MATH ENGLISH
0 Ravi 1 80 81
1 Raju 2 40 70
2 Alex 3 70 40
3 Ron 4 70 50
4 King 5 -5 60
5 Jack 6 30 30
import pandas as pd
my_dict={'NAME':['Ravi','Raju','Alex','Ron','King','Jack'],
'ID':[1,2,3,4,5,6],
'MATH':[80,40,73,70,82,30],
'ENGLISH':[81,70,40,50,60,30]}
my_data = pd.DataFrame(data=my_dict)
my_cond= (my_data['MATH'] >70) & (my_data['MATH'] <75)
replace=-7
my_data['MATH'].mask(my_cond,replace,inplace=True)
print(my_data)
Output
NAME ID MATH ENGLISH
0 Ravi 1 80 81
1 Raju 2 40 70
2 Alex 3 -7 40
3 Ron 4 70 50
4 King 5 82 60
5 Jack 6 30 30
my_data['MATH'].mask(my_data['MATH'] > 80,-5,inplace=True)
Output: Now the original DataFrame will change.
NAME ID MATH ENGLISH
0 Ravi 1 80 81
1 Raju 2 40 70
2 Alex 3 70 40
3 Ron 4 70 50
4 King 5 -5 60
5 Jack 6 30 30
Replace data based multiple condition like CASE THEN ( SQL ) by using np.where Author
🎥 Join me live on YouTubePassionate about coding and teaching, I publish practical tutorials on PHP, Python, JavaScript, SQL, and web development. My goal is to make learning simple, engaging, and project‑oriented with real examples and source code.